POLYMERIC NANOPARTICLES: A PROMISING TOOL FOR THE TREATMENT OF DYSLIPIDEMIA
Abstract
Polymeric nanoparticles (NPs) are a promising platform for drug delivery in various biomedical applications. These nanoparticles, ranging from 1 to 1000 nm, can contain active substances either surface-adsorbed onto the polymeric core or trapped inside it. Both nanocapsules and nanospheres, which are identified by their morphological structures, are referred to as nanoparticles. They are typically fabricated from biocompatible and biodegradable polymers like polylactic-co-glycolic acid (PLGA), chitosan, or PEG. The synthesis of polymeric nanoparticles involves techniques like solvent evaporation, emulsification/solvent diffusion, the inotropic gelation method, emulsification/reverse salting-out, and nanoprecipitation, allowing precise control over particle size, shape, and drug-loading capacity. Surface modifications with targeting ligands or stimulus-responsive moieties can enhance therapeutic efficacy while minimizing off-target effects. Polymeric nanoparticles offer advantages over conventional drug delivery systems, including prolonged circulation times, sustained drug release kinetics, and protection of encapsulated drugs from degradation. Dyslipidemia, characterized by abnormal lipid levels in the bloodstream, is a major risk factor for cardiovascular diseases. They offer a controlled and targeted delivery platform for simvastatin, a lipid-lowering agent, which faces challenges such as poor solubility and limited bioavailability. Review articles state that polymeric nanoparticles are loaded with simvastatin, highlighting their potential benefits in improving drug stability, solubility, and bioavailability. Review articles highlighted that In vitro studies showed sustained release of simvastatin over an extended period and minimal cytotoxicity to cells, In vivo pharmacokinetic and pharmacodynamic studies in animal models of dyslipidemia revealed enhanced drug bioavailability and lipid-lowering efficacy compared to free simvastatin.
References
2. Berberich, A. J., &Hegele, R. A. 2022. A modern approach to dyslipidemia. Endocrinereviews, 43, 611-653.
3. Chung, S., Kim, H. J., Choi, H. K., Park, J. H., & Hwang, J. T. 2020. Comparative study of the effects of diosmin and diosmetin on fat accumulation, dyslipidemia, and glucose intolerance in mice fed a high‐fat high‐sucrose diet. Food Science & Nutrition, 8, 5976-5984.
4. Hameed, A., Mojsak, P., Buczynska, A., Suleria, H. A. R., Kretowski, A., &Ciborowski, M. 2020. Altered metabolome of lipids and amino acids species: a source of early signature biomarkers of T2DM. Journal of clinical medicine, 9, 2257.
5. Bereda, G. 2022. Pathophysiology and management of dyslipidaemia. Biomed J Sci & Tech Res, 43.
6. Mosca, S., Araújo, G., Costa, V., Correia, J., Bandeira, A., Martins, E., & Coelho, M. P. 2022. Dyslipidemia diagnosis and treatment: risk stratification in children and adolescents. Journal of nutrition and metabolism.
7. Wouters, K., Shiri-Sverdlov, R., van Gorp, P. J., van Bilsen, M., & Hofker, M. H. 2005. Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice. Clinical Chemistry and Laboratory Medicine CCLM, 43, 470-479.
8. Gao, W., He, H. W., Wang, Z. M., Zhao, H., Lian, X. Q., Wang, Y. S., & Wang, L. S. 2012. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids in health and disease, 11, 1-8.
9. Nickolas, T. L., Radhakrishnan, J., & Appel, G. B. 2003, July. Hyperlipidemia and thrombotic complications in patients with membranous nephropathy. In Seminars in nephrology 406-411.
10. Amarenco, P., &Labreuche, J. 2009. Lipid management in the prevention of stroke: review and updated meta-analysis of statins for stroke prevention. The Lancet Neurology, 8, 453-463.
11. Sheikh, 2024, March, WebMD, What is dyslipidemia? www.webmd.com, https://www.webmd.com/cholesterol management/ hyperlipidemia-overview. Accessed date: 05/05/2024.
12. Tripathi, K. D. Essentials of medical pharmacology 8th ed.. Jaypee Brothers Medical 2018.
13. Hobbs & kean, 2024, May, healthline, Which statin is safest? www.healthline.com,https://www.healthline.com/health/high cholesterol/statins-which-is-safest. Accessed Date: 05/05/2024.
14. Martinelli, C., Pucci, C., &Ciofani, G. 2019. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL bioengineering, 3.
15. Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D.,& Zhao, Y. 2015. Safety of nanoparticles in medicine. Current drug targets, 16, 1671-1681.
16. Rizvi, S. A., & Saleh, A. M. 2018. Applications of nanoparticle systems in drug delivery technology. Saudi pharmaceutical journal, 26, 64-70.
17. Zhang, X., Li, Y., Wei, M., Liu, C., Yu, T., & Yang, J. 2019. Cetuximab-modified silica nanoparticle loaded with ICG for tumor-targeted combinational therapy of breast cancer. Drug Delivery, 26, 129-136.
18. Li, M., Sun, X., Zhang, N., Wang, W., Yang, Y., Jia, H., & Liu, W. 2018. NIR‐activated polydopamine‐coated carrier‐free “nanobomb” for in situ on‐demand drug release. Advanced Science, 5, 1800155.
19. Liu, S., Pan, J., Liu, J., Ma, Y., Qiu, F., Mei, L., ... & Pan, G. 2018. Dynamically PEGylated and borate‐coordination‐polymer‐coated polydopamine nanoparticles for synergetic tumor‐targeted, chemo‐photothermal combination therapy. Small, 14, 1703968.
20. Edis, Z., Wang, J., Waqas, M. K., Ijaz, M., & Ijaz, M. 2021. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. International journal of nanomedicine, 1313-1330.
21. Zielinska, A., Carreiro, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., &Souto, E. B. 2020. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules, 25, 3731.
22. Pangestuti, R., & Kim, S. K. 2010. Neuroprotective properties of chitosan and its derivatives. Marine Drugs, 8, 2117-2128.
23. Bhumkar, D. R., &Pokharkar, V. B. 2006. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AapsPharmscitech, 7, 138-143.
24. Agnihotri, S. A., Mallikarjuna, N. N., & Aminabhavi, T. M. 2004. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of controlled release, 100, 5-28.
25. Kahraman, E., Gungor, S., & Ozsoy, Y. 2017. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Therapeutic delivery, 8, 967-985.
26. Pedroso‐Santana, S., &Fleitas‐Salazar, N. 2020. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polymer International, 69, 443-447.
27. Racoviţa, S., Vasiliu, S., Popa, M., & Luca, C. 2009. Polysaccharides based on micro-and nanoparticles obtained by ionic gelation and their applications as drug delivery systems. Revue Roumaine de Chimie, 54, 709-718.
28. Mudgil, M., Gupta, N., Nagpal, M., &Pawar, P. 2012. Nanotechnology: a new approach for ocular drug delivery system. Int J Pharm Pharm Sci, 4, 105-12.
29. Singh D., Harikumar S L, Nirmala. 2013 nanoparticles: an overview. journal of Drug Delivery & Therapeutics; 3, 169 – 175
30. Kumar, N., Chaurasia, S., Patel, R. R., Khan, G., Kumar, V., & Mishra, B. 2017. Atorvastatin calcium encapsulated eudragit nanoparticles with enhanced oral bioavailability, safety and efficacy profile. Pharmaceutical Development and Technology, 22, 156-167.
31. Thai, H., Thuy Nguyen, C., Thi Thach, L., Thi Tran, M., Duc Mai, H., Thi Thu Nguyen, T.,& Van Le, Q. 2020. Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Scientific Reports, 10, 1-15.
32. Shinde, A. J., & More, H. N. 2011. Design and evaluation of polylactic-coglycolic acid nanoparticles containing simvastatin. Int J Drug Dev Res, 3, 280-9.
33. Elsayed, S. I., Girgis, G. N., & El-Dahan, M. S. 2023. Formulation and evaluation of pravastatin sodium-loaded PLGA nanoparticles: in vitro–in vivo studies assessment. International Journal of Nanomedicine, 721-742.
34. Gudigennavar, A. S., Chandragirvar, P. C., &Gudigennavar, A. S. 2022. Role of Fluvastatin sodium loaded polymeric nanoparticles in the treatment of Hyperlipidemia: Fabrication and Characterization. German Journal of Pharmaceuticals and Biomaterials, 1, 14-26.
35. Shaker, M. A., Elbadawy, H. M., Al Thagfan, S. S., & Shaker, M. A. 2021. Enhancement of atorvastatin oral bioavailability via encapsulation in polymeric nanoparticles. International Journal of Pharmaceutics, 592, 120077.
36. Vo-An, Q., Nguyen, T. C., Nguyen, Q. T., Vu, Q. T., Truong, C. D., Nguyen, T. L., & Thai,H. 2021. Novel nanoparticle biomaterial of alginate/chitosan loading simultaneously lovastatin and ginsenoside RB1: characteristics, morphology, and drug release study. International Journal of Polymer Science, 2021, 1-14.
37. Badran, M. M., Harisa, G. I., AlQahtani, S. A., Alanazi, F. K., &Zoheir, K. M. 2016. Pravastatin-loaded chitosan nanoparticles: Formulation, characterization and cytotoxicity studies. Journal of Drug Delivery Science and Technology, 32, 1-9.
38. Lavanya, V., Rajeswari, P., Vidyavathi, M., &Sureshkumar, R. V. 2020. Preparation of atorvastatin loaded chitosan nanoparticles: in vitro and in vivo evaluations. International Journal of Nanoscience, 19, 1950036.
39. Gudigennavar, A. S., Chandragirvar, P. C., &Gudigennavar, A. S. 2022. Role of Fluvastatin sodium loaded polymeric nanoparticles in the treatment of Hyperlipidemia: Fabrication and Characterization. German Journal of Pharmaceuticals and Biomaterials, 1, 14-26.
40. Grune, C., Zens, C., Czapka, A., Scheuer, K., Thamm, J., Hoeppener, S., ... & Fischer, D. 2021. Sustainable preparation of anti-inflammatory atorvastatin PLGA nanoparticles. International Journal of Pharmaceutics, 599, 120404.
41. Bathool, A., D Vishakante, G., S Khan, M., &Shivakumar, H. G. 2012. Development and characterization of atorvastatin calcium loaded chitosan nanoparticles for sustain drug delivery. Advanced materials letters, 3, 466-470.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.