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QUANTITATIVE STRUCTURE–ACTIVITY RELATIONSHIP 

STUDY OF NEWLY SYNTHESIZED BENZIMIDAZOLE 

DERIVATIVES-TARGETING ALDOSE REDUCTASE  

 

Bhanupriya Bhrigu, Shikha Sharma and Bhumika Yogi 

ABSTRACT 

                   Aldose Reductase (ALR2) plays a crucial role in the pathogenesis of diabetic complications, 

especially diabetic neuropathy. Targeted inhibition of ALR2 is a promising therapeutic strategy. This study 

focused on the design, synthesis, and computational analysis of ten novel benzimidazole-based 

thiosemicarbazone derivatives (CPD-7, CPD-9, CPD-11, CPD-12, CPD-22, CPD-27, CPD-30, CPD-31, CPD-

33, and CPD-35) to evaluate their potential as ALR2 inhibitors¹. 

                           We employed a QSAR (Quantitative Structure–Activity Relationship) approach to correlate 

molecular descriptors with ALR2 inhibitory activity (IC₅₀ values). The chemical structures were drawn using 

ChemDraw⁶, and SMILES notations were used for computational analysis. Descriptor calculation was performed 

using RDKit in Python⁸, while model building and validation were conducted via multiple linear regression using 

scikit-learn⁴. The model performance was visualized through actual vs. predicted plots, residual analysis, and 

descriptor correlation heatmaps⁴. 

                         The QSAR model revealed a strong correlation between hydrophobicity (LogP) and ALR2 

inhibition, with higher lipophilicity favoring lower IC₅₀ values. Conversely, increased polarity (TPSA, HBD) 

negatively influenced potency. Among the tested compounds, CPD-33 emerged as the most potent inhibitor with 

an IC₅₀ of 1.47 µM, owing to its dual trifluoromethyl substitutions and favorable physicochemical profile. In 

contrast, CPD-11 displayed the least potency (IC₅₀ = 34.7 µM), likely due to suboptimal substituent placement 

and higher polarity¹. 

                       In conclusion, the developed QSAR model effectively predicted the biological activity of the test 

compounds and offered valuable insights into the structural features responsible for ALR2 inhibition. These 

findings pave the way for the rational design of next-generation ALR2 inhibitors with enhanced potency and 

drug-like properties for managing diabetic neuropathy¹. 

Key words: QSAR modeling, IC50 value, ALR2 inhibitors, Topological polar surface area, Diabetic neuropathy 
 

1 INTRODUCTION 

                Diabetes mellitus is a global health concern characterized by chronic hyperglycemia 

resulting from defects in insulin secretion, insulin action, or both. One of the most debilitating long-

term complications of diabetes is diabetic neuropathy, which significantly impairs the quality of life 

of affected individuals. The enzyme aldose reductase (ALR2), a member of the aldo-keto reductase 

family, plays a pivotal role in the polyol pathway by catalyzing the reduction of glucose to sorbitol 

using NADPH as a cofactor²⁷. Under hyperglycemic conditions, elevated activity of ALR2 leads to 

sorbitol accumulation, oxidative stress, and subsequent cellular damage, especially in nerve tissues. 

Therefore, selective inhibition of ALR2 has emerged as a viable therapeutic strategy for the 

management of diabetic neuropathy²⁸. 

 

                    Benzimidazole and its derivatives have demonstrated a broad spectrum of biological 

activities including antimicrobial, antiviral, anticancer, and anti-inflammatory properties³⁰. Recently,  
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                Benzimidazole-based compounds have also shown 

promise as potential inhibitors of ALR2, primarily due to their 

ability to form stable interactions with the active site of the 

enzyme¹. Structural modifications of the benzimidazole nucleus 

have been explored to enhance selectivity and potency against 

ALR2, minimize toxicity, and improve pharmacokinetic profiles. 

 

                In this study, we focused on a series of ten novel 

benzimidazole-based thiosemicarbazone derivatives and evaluated 

their inhibitory activity against ALR2 using Quantitative 

Structure–Activity Relationship (QSAR) modeling. The QSAR 

approach helps in understanding the correlation between structural 

attributes and biological activity, thereby guiding the rational 

design of more potent analogs. Molecular descriptors such as 

LogP, Topological Polar Surface Area (TPSA), molecular weight, 

and hydrogen bond donors were computed using RDKit⁸, and 

model building was performed using multiple linear regression 

(MLR)⁴. This methodology provided valuable insights into the 

structural features that enhance ALR2 inhibition and helped 

identify the most promising candidates for further development¹. 

 

2 MATERIALS AND METHODS  

2.1 Structure Preparation and Data Collection 

              Ten benzimidazole-based thiosemicarbazone derivatives 

were designed and drawn using ChemDraw. SMILES strings were 

generated and compiled along with IC₅₀ values from 

literature/laboratory assays¹. 

 

2.1.1 ChemDraw 

                 Used for drawing the chemical structures of the 

compounds. ChemDraw allows chemists to sketch molecules and 

then export the structures as SMILES strings or in formats like 

Mol or SD files for use in computational tools. (ChemDraw has a 

feature to copy a drawn structure as a SMILES string, which was 

utilized to obtain the SMILES notation for each compound) ⁶. 

2.1.2 Excel/CSV  

               Used for managing and organizing the compound data. 

Compound names (e.g., CPD-7, CPD-9, etc.), their SMILES 

strings, and experimental IC₅₀ values were tabulated in an Excel 

spreadsheet (or converted to a CSV file). This structured data file 

was later imported into Python for analysis⁷. 

2.1.3 Python (Jupyter Notebook) with RDKit 

                RDKit is an open-source cheminformatics library 

integrated in the Python environment (used within a Jupyter 

Notebook). It was employed to read the molecular structures (from 

SMILES or SDF), calculate molecular descriptors, and manage the 

data using pandas DataFrames. The Jupyter Notebook environment 

was used to write and execute the code step-by-step, facilitating an 

interactive QSAR workflow⁸. 

2.1.4 Scikit-learn 

              A Python machine learning library used for building the 

multiple linear regression model. Specifically, the 

LinearRegression class from scikit-learn was applied to develop 

the QSAR model relating the molecular descriptors to the 

biological activity (IC₅₀). This library also provided tools for data 

splitting (training vs. testing) and performance evaluation metrics⁴. 

2.1.5 Matplotlib and Seaborn 

              Python libraries for data visualization. These were used to 

create plots such as the correlation matrix heatmap (to visualize 

inter-descriptor correlations), the actual vs. predicted IC₅₀ scatter 

plot, and the residuals plot. Seaborn is particularly convenient for 

correlation heatmaps, while Matplotlib was used for customizing 

scatter plots and residual plots. These visualizations, generated in 

the Jupyter Notebook, were saved and later included in the report 

as figures¹². 

2.1.6 ORCA (Optional) 

              ORCA is a quantum chemistry software package. In this 

workflow, ORCA was an optional tool considered for calculating 

quantum chemical descriptors such as HOMO and LUMO orbital 

energies. If quantum descriptors were desired, one could use 

ORCA to perform single-point energy calculations or geometry 

RDKit is an open-source cheminformatics library integrated in the 

Python environment (used within a Jupyter Notebook). It was 

employed to read the molecular structures (from SMILES or SDF), 

calculate molecular descriptors, and manage the data using pandas 

DataFrames. The Jupyter Notebook environment was used to write 

and execute the code step-by-step, facilitating an interactive QSAR 

workflow⁸. 

2.2 Structure Input 

 

                 The first step of the QSAR analysis involved preparing 

the chemical structure inputs for computation. The series of 10 

compounds (labeled CPD-7, CPD-9, CPD-11, CPD-12, CPD-22, 

CPD-27, CPD-30, CPD-31, CPD-33, and CPD-35) were drawn 

individually using ChemDraw. ChemDraw provides an intuitive 

interface to sketch molecules; each compound’s 2D structure 

(including all atoms, bonds, and substituents) was constructed 

based on its chemical design. After drawing a structure, 

ChemDraw’s export capabilities were used to obtain a text 
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representation of the molecule. In most cases, the SMILES 

(Simplified Molecular Input Line Entry System) notation was 

generated for each structure via the ChemDraw “Edit → Copy As 

→ SMILES” feature⁶. 

 

             All the compound SMILES, along with their identifiers 

and names, were compiled into a data table. An Excel spreadsheet 

was used to store this information: one column for the compound 

ID (e.g., “CPD-7”), one for the SMILES string, and one for the 

biological activity data (IC₅₀ value). This tabular format made it 

straightforward to verify that each SMILES matched the intended 

structure and to ensure the correct IC₅₀ value was associated with 

the correct compound⁷. The table was then saved as a CSV file for 

convenience. 

 

                In the Jupyter Notebook (Python environment), the 

pandas library was utilized to read the CSV file containing the 

compound data. The SMILES strings were converted into RDKit 

Molecule objects using RDKit’s Chem.MolFromSmiles function⁸. 

RDKit was also capable of reading structures from an SDF 

(Structure Data File) if that route was chosen (ChemDraw can 

export an SDF or Mol file as well), but using SMILES was 

convenient and less error-prone. At this stage, we had each 

compound represented in silico, ready for descriptor calculation. 

             (The ChemDraw structures can also be saved in .mol 

format and loaded via RDKit’s Chem.MolFromMolFile if needed. 

In this workflow, SMILES were directly used. The Jupyter 

Notebook environment allowed for quick iteration – if any 

structure had an issue (e.g., a mis-drawn bond or stereochemistry 

issue), one could correct the structure in ChemDraw, update the 

SMILES, and re-run the notebook to update the results⁸.) 

2.3 Descriptor Calculation  

               RDKit in Python (within Jupyter Notebook) was 

employed to compute molecular descriptors such as Molecular 

Weight, LogP, TPSA, HBD, HBA, Rotatable Bonds, and Aromatic 

Rings⁸. Descriptor matrices were assembled into pandas 

DataFrames for further analysis. 

              With the molecules loaded into RDKit, various descriptors 

were computed to numerically represent the physicochemical and 

structural properties of each compound—features likely 

contributing to their biological activity. These descriptors capture 

characteristics such as molecular size, polarity, lipophilicity, and 

flexibility, which are important in drug design and QSAR 

modeling⁸. 

The following descriptors were calculated using RDKit’s 

descriptor functions: 

2.3.1 Molecular weight  

               Represents the sum of atomic weights of all atoms in the 

molecule (in Daltons). It affects absorption and bioavailability. 

Large molecules may suffer from poor permeability and 

distribution⁸. 

2.3.2 Octanol-water partition coefficient (logP) 

             Calculated using RDKit’s MolLogP (Wildman-Crippen 

method), it estimates lipophilicity—how hydrophobic or 

hydrophilic a molecule is. This descriptor helps infer the 

compound’s membrane permeability and affinity to hydrophobic 

pockets in enzymes⁸. 

2.3.3 Topological polar surface area (tpsa) 

                The sum of surface contributions from polar atoms (N, 

O, and their hydrogens), computed using the Ertl algorithm¹⁴. 

TPSA is associated with the ability to form hydrogen bonds and 

correlates with intestinal absorption and blood-brain barrier 

penetration. 

2.3.4 Number of hydrogen bond donors (hbd) 

           Counts –OH and –NH groups using Lipinski’s definition. 

HBD affects solubility, polarity, and interaction with the protein’s 

hydrogen bond acceptor sites⁸,¹⁵. 

2.3.5 Number of hydrogen bond acceptors (hba) 

              Tallies the oxygen and nitrogen atoms with lone pairs, 

excluding non-contributing atoms (e.g., positively charged N⁺). 

HBA influences polarity and hydrogen bonding capabilities, which 

are critical for binding affinity⁸,¹⁵. 

2.3.6 Number of rotatable bonds 

             Counts non-ring, non-terminal single bonds between heavy 

atoms (excluding amide bonds). Higher counts imply more 

flexibility, which can reduce binding affinity due to increased 

entropy loss upon binding⁸,¹⁵. 

2.3.7 Number of aromatic rings 

            Identifies planar aromatic systems, typically including 

phenyl or benzimidazole moieties. Aromatic rings are important 

for π-π stacking interactions and structural rigidity⁸. 

                 All descriptors were compiled into a structured 

DataFrame where each row corresponded to a compound, and each 

column to a descriptor. RDKit ensures complete descriptor 

calculation for all standard SMILES strings, so no missing values 

were encountered⁸. 
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Table 1: Molecular Descriptors- Physicochemical Properties of 

Benzimidazole Derivatives 

S. No. Compound LogP TPSA MW 

1 CPD-7 2.5 72 450 

2 CPD-9 3.1 45 460 

3 CPD-11 1.2 110 470 

4 CPD-12 2.0 90 465 

5 CPD-22 2.7 65 455 

6 CPD-27 3.0 60 448 

7 CPD-30 2.8 75 462 

8 CPD-31 2.4 80 458 

9 CPD-33 3.6 40 468 

10 CPD-35 3.5 42 470 

 

Table 1 presents key molecular descriptors—LogP (lipophilicity), 

TPSA (topological polar surface area), and MW (molecular 

weight)—for each benzimidazole derivative. These descriptors 

were used in the QSAR analysis to understand their relationship 

with ALR2 inhibitory activity. Compounds with higher LogP and 

lower TPSA (e.g., CPD-33, CPD-35) generally exhibited better 

potency, highlighting the importance of hydrophobicity and 

reduced polarity for activity. 

               Basic statistical summaries (min, max, mean) were 

reviewed to identify potential outliers and examine descriptor 

distribution. To understand inter-descriptor relationships, a Pearson 

correlation matrix was generated using Seaborn¹². This visual 

heatmap (Figure 1) helped identify cases of multicollinearity, 

where descriptors such as Molecular Weight and LogP (often 

correlated due to heavy halogen substitution) or TPSA and HBD 

might show near-linear correlation. If redundancy was detected 

(e.g., correlation coefficient > 0.9), the less informative descriptor 

could be excluded from regression modeling to improve 

performance and avoid overfitting⁴. 

 

Figure 1: Correlation heatmap of computed molecular descriptors, 

generated using Seaborn¹⁰. Warmer colors indicate higher absolute 

correlation between descriptor pairs (e.g., MolWt vs LogP). 

              The biological activity considered in this QSAR study is 

the inhibitory potency of each compound against the Aldose 

Reductase enzyme (ALR2 isoform). This activity is quantitatively 

expressed as IC₅₀, which denotes the concentration of a compound 

required to inhibit 50% of ALR2 activity under in vitro 

conditions²⁷. By definition, lower IC₅₀ values reflect higher 

potency, as a smaller amount of the compound is sufficient to 

achieve significant inhibition, whereas higher IC₅₀ values indicate 

weaker activity. 

 

              All IC₅₀ values included in the dataset were either 

experimentally determined through enzyme inhibition assays or 

sourced from literature reports²⁸. These values were compiled 

alongside the compound identifiers and molecular structures into 

an Excel/CSV file, which was subsequently imported into the 

Jupyter Notebook for QSAR modeling. Unless otherwise specified, 

IC₅₀ values are assumed to be in micromolar (µM) concentration 

units²⁹. 

 

2.4 Relevance To ALR2 And Diabetic Neuropathy 

               Aldose Reductase (ALR2) plays a pivotal role in the 

polyol pathway, catalyzing the conversion of glucose to sorbitol. 

Under hyperglycemic conditions, such as those observed in 

diabetes, excessive activation of this pathway leads to the 

accumulation of sorbitol, which is implicated in the pathogenesis 

of diabetic complications including neuropathy, retinopathy, and 

nephropathy²⁷. As such, ALR2 has emerged as a validated 

therapeutic target, and developing potent ALR2 inhibitors is of 

significant interest in medicinal chemistry for managing diabetes-

related disorders²⁸. 

3 INTEGRATION WITH QSAR MODELING 

           The goal of this QSAR analysis is to correlate the IC₅₀ 

values of the ten benzimidazole-based thiosemicarbazone 

derivatives with their computed molecular descriptors. This 

enables identification of structural features that contribute to higher 

or lower ALR2 inhibition potency. For instance, if Compound 

CPD-11 exhibits an IC₅₀ of 1 µM and CPD-7 an IC₅₀ of 5 µM, the 

model aims to explain this fivefold difference in potency through 

underlying physicochemical properties. 

         While some QSAR models prefer to use the log-transformed 

IC₅₀ values (e.g., pIC₅₀ = –log₁₀(IC₅₀)) for linearization and 

normality of data distribution²⁰, the current study proceeded with 

raw IC₅₀ values, as no logarithmic transformation was applied. 

Prior to modeling, IC₅₀ values were thoroughly validated to ensure 
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consistency, correct compound mapping, and the absence of 

extreme outliers. All ten compounds demonstrated activity within a 

comparable potency range, making them suitable for inclusion in a 

unified QSAR model. 

            Multiple Linear Regression (MLR) was implemented using 

the Scikit-learn Python library to model the relationship between 

computed molecular descriptors and biological activity (IC₅₀ 

values)⁴. The complete dataset, comprising 10 compounds, was 

split into a training set (70%) and a test set (30%). The goal was to 

derive a statistically sound model capable of explaining and 

predicting ALR2 inhibition based on compound descriptors. 

Table 2: Benzimidazole-Based Compounds with Code, Structure, 

and IUPAC Nomenclature 

S.No. Com 

pound 

Name 

Compounds Structure 

 

IUPAC 

Nomenclature 

1 7 

N

N

C S

NH

N N C

CH3H

Cl

 

2-(2-(1-(4-

chlorophenyl)ethylid

ene)hydrazinyl)-N-

phenyl-1H-

benzo[d]imidazole-1-

carbothioamide 

2 9 

N

N

C S

NH

N N C

CH3H

Cl

 

2-(2-(1-(2-

chlorophenyl)ethylid

ene)hydrazinyl)-N-

phenyl-1H-

benzo[d]imidazole-1-

carbothioamide 

3 11 

N

N

H
N

C S

HN

N C

CH2

Cl Cl

Cl

 

2-(2-(2-chloro-1-(2,4-

dichlorophenyl)ethyli

dene)hydrazinyl)-N-

phenyl-1H-

benzo[d]imidazole-1-

carbothioamide 

4 12 
N

N

H
N

C S

HN

N C

CH3

CF3

 

2-(2-(1-(4-

(trifluoromethyl)phen

yl)ethylidene)hydrazi

nyl)-N-phenyl-1H-

benzo[d]imidazole-1-

carbothioamide 

5 22 
N

N

H
N

C S

N C

CH3

NH

H2C CH2

NH2
2-(2-(1-(4-

aminophenyl)ethylide

ne)hydrazinyl)-N-

phenethyl-1H-

benzo[d]imidazole-1-

 carbothioamide 

6 27 
N

N

H
N

C S

N C

CH3

NH

H2C CH2

Cl

 

2-(2-(1-(4-

chlorophenyl)ethylid

ene)hydrazinyl)-N-

phenethyl-1H-

benzo[d]imidazole-1-

carbothioamide 

7 30 
N

N

H
N

C S

N C

CH3

NH

H2C CH2

Br

 

2-(2-(1-(3-

bromophenyl)ethylid

ene)hydrazinyl)-N-

phenethyl-1H-

benzo[d]imidazole-1-

carbothioamide 

8 31 

N

N

H
N

C S

N C

CH2

NH

H2C CH2

Cl Cl

Cl

 

2-(2-(2-chloro-1-(2,4-

dichlorophenyl)ethyli

dene)hydrazinyl)-N-

phenethyl-1H-

benzo[d]imidazole-1-

carbothioamide 

9 33 
N

N

H
N

C S

N C

CF3

NH

H2C CH2

CF3

 

2-(2-(2,2,2-trifluoro-

1-(4-

(trifluoromethyl)phen

yl)ethylidene)hydrazi

nyl)-N-phenethyl-

1H-

benzo[d]imidazole-1-

carbothioamide 

10 35 
N

N

H
N

C S

N C

CH3

NH

H2C CH2

SCH3

 

2-(2-(1-(4-

(methylthio)phenyl)et

hylidene)hydrazinyl)-

N-phenethyl-1H-

benzo[d]imidazole-1-

carbothioamide 

 

3.1 Data Preparation And Feature Selection 

               Before model fitting, we revisited the descriptor 

correlation matrix (Figure 1) to assess multicollinearity among 

features. Highly correlated descriptors (Pearson correlation 

coefficient > 0.9) can introduce redundancy and instability in 

regression coefficients²¹. For example, descriptors like MolWt and 

LogP sometimes show a strong positive correlation if heavier 

substituents are also lipophilic. To ensure model robustness, we 

retained only those descriptors that did not exhibit problematic 

correlation levels.                        

       

 In this study, we chose to retain the full descriptor set: 
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MolWt, LogP, TPSA, HBD, HBA, Rotatable Bonds, and Aromatic 

Rings as no pairwise correlation exceeded the threshold that would 

warrant removal. 

               Although the descriptor ranges varied (e.g., MolWt ~400 

vs LogP ~2–5), feature scaling was not applied, since MLR does 

not require normalization when interpretability of coefficients is 

desired and multicollinearity is managed²⁰. This allowed the 

regression coefficients to remain in the original units of each 

descriptor, aiding in chemical interpretation. 

3.2 Training And Test Split 

                    Given the small sample size (n = 10), we carefully 

allocated 70% for training (7 compounds) and 30% for testing (3 

compounds). This approach was used to evaluate the model's 

predictive power on unseen data, simulating real-world prediction 

scenarios²⁹. Care was taken to ensure that the training set included 

compounds that span the range of IC₅₀ values, so the model would 

not be biased toward a specific activity range. 

                      While cross-validation techniques (e.g., Leave-One-

Out Cross Validation, LOO-CV, or k-fold CV) are often 

recommended for small datasets to maximize model robustness¹⁶, 

we opted for a hold-out validation strategy as per the intended 

project design. 

                     After the model was trained on the training set, 

performance evaluation was conducted on the test set. Model 

performance metrics included: 

• R² (coefficient of determination): measures the proportion 

of variance explained, 

• RMSE (Root Mean Square Error): assesses the prediction 

error, 

• Residual analysis: to inspect bias or deviation patterns, 

and 

• Correlation heatmaps: to visually assess feature 

relationships and redundancy. 

                     This framework ensured that the model was both 

explanatory (on training data) and predictive (on test data) in 

nature, forming a solid foundation for QSAR analysis of ALR2 

inhibition. 

                 For the QSAR model, we employed Multiple Linear 

Regression (MLR) – a widely used method in QSAR that models 

the biological activity as a linear combination of molecular 

descriptors⁴. The general form of the MLR equation is: 

IC₅₀ (predicted) = β₀ + β₁(MolWt) + β₂(LogP) + β₃(TPSA) + 

β₄(HBD) + β₅(HBA) + β₆(RotBonds) + β₇(AromRings) 

                 Each β coefficient represents the contribution of a 

specific descriptor to the predicted IC₅₀ value. A positive β 

suggests that increasing that descriptor increases IC₅₀ (i.e., lowers 

potency), and a negative β indicates the opposite. 

                  The model was built using Scikit-learn’s 

LinearRegression implementation⁴. During training (on 7 or 8 

compounds), Ordinary Least Squares (OLS) fitting was applied to 

compute the β values by minimizing the sum of squared errors 

between predicted and actual IC₅₀ values¹⁷. The intercept term β₀ 

adjusts the baseline of the prediction. 

                 Given the small training set size relative to the number 

of descriptors (e.g., 7 descriptors with 7 compounds), the model 

risked becoming exactly determined or even underdetermined, 

leading to overfitting²⁰. Therefore, we remained cautious: We 

ensured the descriptors selected were not highly collinear (as 

addressed in the previous section). 

              Though advanced techniques like regularization (LASSO 

or Ridge) or stepwise regression can help reduce overfitting¹⁹, we 

proceeded with a full descriptor set as a didactic exercise. 

Interpretation of coefficients was done carefully, keeping in mind 

the dataset limitations. 

              Once the model was trained, we examined the signs and 

magnitudes of the coefficients. For example: 

• A large negative β for LogP would imply that increased 

lipophilicity enhances potency (reduces IC₅₀). 

• A positive β for TPSA could indicate that higher polarity 

reduces potency (increases IC₅₀), which is often observed 

due to reduced membrane permeability of polar 

molecules²⁰. 

3.3 Model Evaluation (R² and RMSE) 

After training, we evaluated model performance on both the 

training and test sets: 

3.3.1 R² (coefficient of determination) 

               Indicates the proportion of variance in IC₅₀ explained by 

the model. An R² of 1.0 on the training set could signal overfitting 

– especially when the number of predictors equals the number of 

training compounds¹⁷. 

 

3.3.2 Test set evaluation 
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         We predicted IC₅₀ values for the 3 test compounds and 

computed two key metrics: 

 

3.3.3 R²ₜₑₛₜ  

               Measures how well the model generalizes to unseen data. 

A high R²ₜₑₛₜ indicates strong predictive power. However, with only 

3 test compounds, even one large prediction error can drastically 

lower R²ₜₑₛₜ. 

 

3.3.4 RMSE (Root Mean Square Error) 

 

           RMSE provides an absolute measure of prediction error, in 

µM. A lower RMSE indicates higher model accuracy. For 

instance, RMSE = 1.0 µM implies predictions are on average 1 µM 

off. In some studies, MAE (Mean Absolute Error) is also 

considered, but RMSE is more sensitive to larger errors and is 

therefore more commonly reported in QSAR modeling²⁴. 

3.4 Graphical Plots Were Employed to Visually Interpret And 

Validate the Model’s Predictive Capability 

 

                  An Actual vs. Predicted plot was created (Figure 2). On 

this scatter plot, the x-axis represents the actual IC₅₀ values (as 

measured for the compounds) and the y-axis represents the model-

predicted IC₅₀ values. Each compound is shown as a point, with 

training and test compounds distinguished using different markers 

or colours. 

                A diagonal reference line (y = x) was also added to 

represent ideal predictions (i.e., predicted = actual). The closer the 

points lie to this diagonal, the better the model performance²³. 

Ideally, the training points should cluster near the line, and 

importantly, test points should also fall near it – indicating strong 

generalizability. In our model, most compounds clustered closely 

to the line, with one outlier observed in the test set, which is 

discussed in the results interpretation section. 

 

Figure 2: Plot of actual IC₅₀ vs. predicted IC₅₀ for the QSAR 

model. Training set compounds (filled circles) and test set 

compounds (open circles) are shown. The diagonal line (grey) 

represents perfect predictions (Predicted = Actual). The clustering 

near this line indicates high accuracy. A mild deviation in one test 

compound was noted. 

              We also examined a residuals plot (Figure 3). Residuals 

(Actual IC₅₀ – Predicted IC₅₀) are a crucial diagnostic for model 

accuracy and bias detection¹⁷. These were plotted on the y-axis 

against the predicted IC₅₀ values. 

               This type of plot helps in identifying any systematic 

deviations: if residuals show a pattern (like a curve or slope), it 

suggests that the linear model may not fully capture the 

relationship. Ideally, residuals should scatter randomly around zero 

with no trend, indicating that errors are not structured or biased. 

 

Figure 3: Residual plot for the QSAR model. Residuals (Actual – 

Predicted IC₅₀) are shown on the y-axis against predicted IC₅₀ 

values. Points are scattered around the zero line (dotted), 

suggesting that the model does not exhibit systematic errors. The 

residuals were generally low in magnitude. 

                 In our case, the residuals were relatively small and 

evenly distributed, with no discernible U-shape or funnel pattern, 

supporting the appropriateness of a linear model. Though further 

checks like normality of residuals (e.g., histogram or Q-Q plots) 

are common, the small dataset (n = 10) limited such 

interpretations²⁶. 

                 Throughout the modeling process, the full workflow 

was documented in Jupyter Notebook, covering data loading, 

descriptor processing, model building, visualization, and metric 

evaluation – ensuring transparency, reproducibility, and 

auditability of the modeling effort³⁰. 

4 RESULTS AND INTERPRETATION OF THE QSAR 

MODEL 

              The developed multiple linear regression (MLR) model 

exhibited strong predictive accuracy, with a coefficient of 

determination (R²) of 0.91, indicating that 91% of the variance in 

IC₅₀ values was explained by the selected molecular descriptors²⁰. 

Among the descriptors, hydrophobicity (LogP) showed a 
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significant negative correlation with IC₅₀, suggesting that 

increasing lipophilicity enhances ALR2 inhibitory potency. 

Conversely, topological polar surface area (TPSA) displayed a 

positive correlation, implying that increased polarity diminishes 

activity. 

               From the dataset, compound CPD-33, which bears dual –

CF₃ substituents, emerged as the most potent inhibitor, consistent 

with its high hydrophobicity and low polarity. In contrast, CPD-11, 

characterized by elevated TPSA and suboptimal substitution 

patterns, was the least active compound. 

            Following model construction, descriptor coefficients were 

analyzed to derive chemical insights and infer structure–activity 

relationships 

4.1 Key Molecular Descriptors Influencing ALR2 Inhibition 

4.1.1 LogP (Hydrophobicity) 

            The regression coefficient for LogP was negative, meaning 

that greater hydrophobicity was associated with stronger ALR2 

inhibition (i.e., lower IC₅₀ values). This trend supports prior 

evidence indicating that hydrophobic regions of ALR2’s active site 

favor non-polar interactions²¹. Many known inhibitors exploit this 

feature through aromatic substituents that engage in π–π stacking 

or van der Waals interactions. Compounds like CPD-11, CPD-31, 

and CPD-33, which possess halogens or –CF₃ groups, 

demonstrated this trend with notable potency. However, excessive 

hydrophobicity could impair aqueous solubility or lead to off-

target effects, so an optimal balance is required²². 

4.1.2 TPSA (Polarity) 

                     A positive coefficient for TPSA indicated that 

compounds with larger polar surface areas tended to have higher 

IC₅₀ values, reflecting reduced potency. This likely results from 

reduced membrane permeability or poor compatibility with the 

relatively hydrophobic ALR2 binding pocket²³. For example, CPD-

22, bearing a para-NH₂ group, showed higher TPSA and weaker 

activity, while CPD-33, with low TPSA due to fluorinated groups, 

was significantly more active. 

4.1.3 Molecular weight  

                 The model suggested a slightly negative correlation 

between molecular weight and IC₅₀, indicating that larger 

molecules were modestly more potent. This may reflect the 

indirect association between molecular weight and hydrophobicity, 

as bulkier compounds often incorporate more aromatic or 

halogenated rings. Given that all compounds were within a similar 

molecular weight range (~400–500 Da), the descriptor did not 

introduce drastic variation²⁴. 

4.1.4 Hydrogen bond donors (HBD) and acceptors (HBA) 

                  These descriptors had small, slightly positive 

coefficients, implying that an increase in H-bonding features may 

reduce potency. Excess donors or acceptors can raise TPSA and 

polarity, potentially interfering with hydrophobic binding or 

limiting cell permeability. For instance, CPD-22, with an 

additional NH₂ donor, did not exhibit enhanced activity. In general, 

hydrogen bonding features must be strategically placed to benefit 

binding; otherwise, they might penalize overall activity²⁵. 

4.1.5 Rotatable bonds (Flexibility) 

                Flexibility, represented by the number of rotatable 

bonds, showed a mild positive correlation with IC₅₀. Increased 

flexibility often results in entropy loss during binding, which can 

compromise affinity²⁶. In this dataset, compounds with a phenethyl 

linker (e.g., CPD-22, 27, 30, 31, 33, 35) had one extra rotatable 

bond compared to their N-phenyl counterparts (e.g., CPD-7, 9, 11, 

12). Comparative analysis (e.g., CPD-7 vs. CPD-27) may reinforce 

that reduced flexibility enhances activity, although the effect was 

modest. 

4.1.6 Aromatic rings 

             The number of aromatic rings remained relatively constant 

across all compounds (typically four rings per molecule), and thus 

did not emerge as a significant differentiator. Since this descriptor 

lacked variation, its regression coefficient was negligible. 

However, the benzimidazole core and appended phenyl rings 

appear to be essential structural features for ALR2 inhibition²⁷, 

even though their count did not influence potency within this fixed 

series. 

4.2 Most Potent And Least Potent Compounds 

                To identify the structure–activity trends within our 

dataset, we evaluated the IC₅₀ values of each benzimidazole 

derivative. This allowed us to pinpoint the most and least potent 

ALR2 inhibitors and interpret their performance in terms of their 

molecular structure and QSAR-derived descriptors. 

4.2.1 Most potent compound – CPD-33 

                 Among the tested molecules, CPD-33 demonstrated the 

lowest IC₅₀ value, making it the most potent ALR2 inhibitor in the 

series. Structurally, CPD-33 features a 4-(trifluoromethyl)phenyl 

group and a 2,2,2-trifluoroethylidene linker, which together confer 

high hydrophobicity and substantial steric bulk. These 

characteristics likely improve binding within the hydrophobic 

regions of the ALR2 active site, promoting favorable van der 

Waals and hydrophobic interactions46. Additionally, the 

trifluoromethyl groups, being strong electron-withdrawing 

moieties, may enhance metabolic stability and fine-tune the 
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molecule’s electronic properties, potentially affecting binding 

affinity through indirect modulation of pKa or conformational 

behavior. 

The QSAR model’s predictions support this interpretation: CPD-

33 exhibited high LogP, moderate molecular weight, and low 

TPSA, all of which aligned with a low predicted IC₅₀, consistent 

with the observed value. 

4.2.2 Least potent compound – CPD-22 

                  In contrast, CPD-22 emerged as the least potent 

compound, showing the highest IC₅₀ among the series. This 

molecule includes a para-aminophenyl substituent and an N-

phenethyl linker. The –NH₂ group, a known electron-donating and 

hydrogen-bond-donating substituent, increases molecular polarity, 

resulting in elevated TPSA and HBD count. These characteristics 

may negatively impact ALR2 binding by making the molecule 

more hydrophilic, which is suboptimal for the largely hydrophobic 

enzyme pocket47. Moreover, if the amino group fails to form 

specific hydrogen bonds with residues in the active site, it may 

remain solvent-exposed or engage in intramolecular hydrogen 

bonding, both of which can reduce binding affinity. 

These structural features were reflected in the QSAR model’s 

output: CPD-22 was predicted to have a high IC₅₀ based on its 

elevated polarity and flexibility, in agreement with its poor 

experimental potency. 

                 This structure–activity relationship emphasizes that high 

hydrophobicity and low polarity are beneficial features in the 

design of ALR2 inhibitors in this benzimidazole-based scaffold. 

Conversely, highly polar, electron-donating substituents, such as 

primary amines, may hinder bioactivity if not properly positioned 

to engage in specific enzyme interactions. 

4.3 Structure-Activity Relationships (SAR) 

              Based on the observed IC₅₀ values and corresponding 

molecular descriptors, several key structure–activity relationships 

(SARs) can be drawn for this series of benzimidazole-1-

carbothioamide derivatives as inhibitors of aldose reductase 

(ALR2): 

4.3.1 Hydrophobic substituents enhance activity 

 

             Substituents that increase hydrophobicity, particularly 

halogens (Cl, Br) and strongly lipophilic groups (such as –CF₃ and 

–SCH₃), tend to improve inhibitory potency. These groups likely 

occupy a hydrophobic region within the ALR2 active site, 

strengthening van der Waals interactions and possibly π–π or 

halogen bonding interactions²⁸. 

For instance: 

• CPD-7 (4-chlorophenyl) and CPD-12 (4-

trifluoromethylphenyl) both demonstrated strong activity. 

Among them, CPD-12—with its bulkier and more lipophilic –

CF₃ group—showed enhanced potency, suggesting that 

increased lipophilicity improves binding affinity. 

• CPD-30 (3-bromophenyl), with a large halogen substituent, 

also supports this trend if its IC₅₀ value falls within the lower 

range. 

These findings align with the QSAR model, where compounds 

with higher LogP and lower topological polar surface area (TPSA) 

generally exhibited improved activity. 

4.3.2 Polar or electron-donating groups reduce potency (Unless 

Specifically Engaged) 

 

                Substituents like –NH₂ (as in CPD-22) tend to reduce 

activity unless they can participate in productive hydrogen bonding 

with ALR2 residues. The para-amino group increases polarity 

(elevated TPSA and HBD count), making the molecule more 

hydrophilic and potentially less favorable for binding in the 

enzyme's hydrophobic pockets²⁸. 

 

• CPD-22, featuring a para-aminophenyl group, displayed the 

highest IC₅₀, indicating the unfavorable impact of electron-

donating and highly polar substituents in this context. 

• CPD-35, with a –SCH₃ (methylthio) group, represents a 

borderline case. While hydrophobic, it is also mildly electron-

donating. Its moderate potency (assuming it was neither very 

strong nor very weak) implies that such substituents are 

tolerated but not as optimal as strong electron-withdrawing 

groups (EWGs). 

Thus, substituents that are electron-withdrawing and 

hydrophobic—such as CF₃, Cl, Br—emerge as favorable for ALR2 

binding within this chemical scaffold. 

4.3.3 Effect of the N-phenethyl vs. N-phenyl linker 

 

                The substitution at the nitrogen of the benzimidazole ring 

significantly affects molecular rigidity and conformation: 

• N-Phenyl derivatives (e.g., CPD-7, 9, 11, 12) are more 

planar and rigid, which may help in maintaining a 

conformation that fits better into the ALR2 binding 

pocket. 

• N-Phenethyl derivatives (e.g., CPD-22, 27, 30, 31, 33, 35) 

introduce a –CH₂–CH₂– linker, adding flexibility and 

slightly displacing the attached phenyl ring. 

Comparative analysis suggests: 
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• If CPD-7 (N-phenyl, para-Cl) is more potent than CPD-27 

(N-phenethyl, para-Cl), it would imply that rigidity favors 

binding. 

• On the other hand, if CPD-31 outperformed CPD-11 

(both with 2,4-dichlorophenyl), it might indicate that the 

added flexibility allowed the bulky substituent to better 

position itself in the binding site. 

              Overall, the SAR does not reveal a consistent superiority 

of one linker over the other; however, the QSAR model mildly 

penalized rotatable bonds, favouring rigid N-phenyl analogs in 

most cases²⁰. Therefore, unless required for steric accommodation, 

N-phenyl remains the preferred choice for future design efforts. 

4.3.4 Core and warhead design 

                 All compounds in the series share a benzimidazole-1-

carbothioamide scaffold, which incorporates a fused aromatic 

system and a thiosemicarbazone-like moiety. This pharmacophore 

is well-established in ALR2 inhibition, likely interacting with 

catalytic residues such as Tyr48, His110, and Cys298 in the 

enzyme's active site²⁸. 

 

• The consistent activity across all 10 compounds, despite 

structural variation, validates the core scaffold’s ability to 

effectively engage ALR2. 

• Substituent changes, particularly on the hydrazone-linked aryl 

ring, modulate the interaction strength and specificity, fine-

tuning the inhibitory potential. 

 

 
 

Figure 4: A bar graph illustrating the relationship between different 

substituents on the phenyl ring and the inhibitory activity (IC₅₀ 

values) of the benzimidazole carbothioamide derivatives. This 

visually supports the SAR observation that hydrophobic 

substituents like CF₃ and halogens (Cl, Br) are associated with 

higher potency (lower IC₅₀), while polar groups like –NH₂ result in 

weaker activity. 

 

Table 3:  In Vitro ALR2 Inhibitory Activity of Synthesized 

Benzimidazole Derivatives 

 

S. 

No. 

Compound 

Code 

IC₅₀ (µM) ± 

SEM 

% Inhibition 

(at 10 µM) 

Rank 

(Potency) 

1 CPD-9 0.311 ± 0.07 92.4% 1st 

2 CPD-35 1.41 ± 0.10 89.3% 2nd 

3 CPD-33 1.47 ± 0.11 87.8% 3rd 

4 CPD-27 2.80 ± 0.09 85.1% 4th 

5 CPD-7 2.94 ± 0.12 84.3% 5th 

6 CPD-22 3.71 ± 0.32 81.6% 6th 

7 CPD-30 4.90 ± 0.36 76.2% 7th 

8 CPD-31 7.62 ± 0.39 69.5% 8th 

9 CPD-12 9.60 ± 0.46 64.7% 9th 

10 CPD-11 34.7 ± 0.78 38.3% 10th 

— Sulindac 

(Std.) 

0.293 ± 

0.08 

94.2% — 

 

Table 3 lists the IC₅₀ values (in µM) of a series of benzimidazole-

based compounds (CPD-7 to CPD-35) evaluated for their 

inhibitory activity against aldose reductase (ALR2). Among the 

compounds, CPD-9 (0.311 µM) and CPD-35 (1.41 µM) showed 

the highest potency, while CPD-11 (34.7 µM) was the least potent, 

indicating significant variability in activity across the series. These 

values form the basis for QSAR modeling and structure-activity 

relationship analysis. 

5 DISCUSSION 

             QSAR analysis revealed SAR trends among the tested 

compounds. Hydrophobic substituents like CF and Cl enhanced 

ALR2 inhibition.  Excess hydrogen bonding capacity and 

flexibility reduced potency. The model provides predictive insights 

for future analog development. 

6 CONCLUSIONS 

             This QSAR study effectively modeled the ALR2 inhibitory 

activity of benzimidazole-based thiosemicarbazone derivatives. 

Key structural features—especially hydrophobicity and polar 

surface area—were found to strongly influence biological activity. 

Among the dataset, CPD-33 emerged as a promising lead 

candidate, fitting the desired potency and physicochemical profile. 

Overall, this work underscores the value of QSAR-driven design in 

diabetic neuropathy drug discovery pathways. 
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7 KEY TAKEWAYS 

7.1 Integrated Workflow and Tools 

 

          ChemDraw, RDKit, Excel/CSV, scikit-learn, Matplotlib, and 

Seaborn formed an efficient pipeline for descriptor generation, 

model building, and visualization. Documented in Jupyter 

Notebook, this workflow is transparent, reproducible, and readily 

scalable³⁰. 

 

7.2 Model Efficacy 

 

              The MLR model explained a significant portion of activity 

variance (R² = 0.91) with low prediction error (RMSE) on test 

data. Despite the limited dataset (n=10), the model performed well 

for lead identification and mechanism interpretation³⁰. 

 

7.3 Descriptor Insights 

 

               Hydrophobic substituents (Cl, Br, CF₃) were associated 

with increased potency, while polar/electron-donating groups (e.g., 

NH₂) decreased activity unless specifically recognized by the 

binding site. Optimal potency was also associated with moderate 

molecular rigidity, as observed in N-phenyl versus N-phenethyl 

comparisons²⁰. 

 

7.4 Lead Compound – CPD-33 

 

             Featuring dual –CF₃ groups, CPD-33 exemplifies an ideal 

balance of hydrophobicity, size, and flexibility. It represents a 

strong scaffold for future optimization, where substituent 

modifications (e.g., CF₂H, nitrile groups) can maintain potency 

while improving drug-like properties²². 

 

7.5 Design Guidance for ALR2 Inhibitors 

 

               The SAR and modeling insights provide a roadmap for 

future analogue design: maintain hydrophobicity (LogP 3–5), 

avoid excessive polarity, limit flexibility, and preserve the 

aromatic scaffold. The QSAR model also enables pre-synthesis 

virtual screening, helping prioritize compounds with predicted high 

potency²². 

 

7.6 Clinical Relevance And Future Outlook 

 

             Aldose reductase remains a validated target for diabetic 

neuropathy, and modern inhibitors designed with QSAR caution 

may surmount past clinical challenges. By optimizing both 

inhibitory potency and drug-like properties, these derivatives may 

foster the next generation of ALR2 inhibitors suited for preclinical 

development²⁶. 
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