Techniques and Evaluation Tests for Colon Cancer Treatment Using Pellets: A Review

  • Shubham M. Waghmare Research Scholar, Department of Pharmacology, Navsahyadri Institute of Pharmacy, Pune, Maharashtra, India 411001
  • Namrata N. More Research Scholar, Department of Pharmacology, Navsahyadri Institute of Pharmacy, Pune, Maharashtra, India 411001
  • Suraj R. Jagtap Research Scholar, Department of Pharmacology, Navsahyadri Institute of Pharmacy, Pune, Maharashtra, India 411001
  • Trushali A. Mandhare Professor, Department of Pharmacology, Navsahyadri Institute of Pharmacy, Pune, Maharashtra, India 411001
  • Gaurav K. Soni Professor, Department of Pharmacology, Navsahyadri Institute of Pharmacy, Pune, Maharashtra, India 411001
  • Ajay Y. Kale Professor, Department of Pharmacology, Navsahyadri Institute of Pharmacy, Pune, Maharashtra, India 411001

Abstract

This review outlines the manufacturing process for globular pellets. The production method includes the following steps: drug stacking, displacement-merumerization, cryopelletization, shrink, balling, hot-soften extrusion generation, freeze pelletization, spray-drying, and spray-congealing. The benefits and risks of several pelletization methods were discussed. The current study's objective is to examine the efficacy of anticancer drugs and metal chelators in treating colorectal cancer (CRC). Phytic acid, 5-fluorouracil (5-FU), microcrystalline cellulose (MCC) PH 100 and 1 compile in the pellets, hydroxypropyl methylcellulose (HPMC), and barium sulphate were processed utilizing the extrusion spheronization technology. To achieve colon-specific medication delivery, Eudragit S100 was layered over the ability pellets. Pellets have been praised for a variety of micromeritic and medicinal qualities. In the Ehrlich ascites carcinoma (EAC)-driven patient-derived zenograft (PDX) paradigm, the in vivo treatment potency separates the pharmacokinetic and pharmacodynamic bounds. By chelating manganese, phytic acid, and five-FU combinations, they appear to provide more cytotoxic interest through a better reactive oxygen species (ROS) stage. Later pharmacokinetic studies showed a maximum 50% drop in Cmax within the finished setup, indicating decreased inherent exposure to the drug component.

Keywords: Pelletization, Merumerization, Drying, cancer, Spheronization, colorectal cancer

References

Dashevsky, A., K. Kolter, and R. Bodmeier, 2004. Compression of pellets coated with various aqueous polymer dispersions International Journal of Pharmaceutics, 279, 19–26.
2. Gothi GD. Pelletization, Journal of Global Pharma Technology, 2010;2(1):45–57.
3. Ansel CH, Poppovich NG, 1995. Pharmaceutical Dosage Forms and Drug Delivery Systems. New Delhi: B.I. Waverly Pvt. Ltd., 6: 213.
4. Bianchini R., Bruni G., Gazzaniga A., and Vecchio C., 1992. Influence of extrusion spheronization processing on the physical properties of dindobufen pellets containing pH adjusters Drug Dev. Ind. Pharm., 18: 1485–1503.
5. Bodmeir R., 1997. Tabletting of coated pellets Eur J Pharmaceut and Biopharmaceutics; 43(1): 1–8.
6. Bornhoft M., Thomas M., and Kleinibudde P. Preliminary assessment of carrageenan as an excipient for extrusion or spheronization J. Pharm. Biopharm., 2005; 59:127–31.
7. Connor RE, Schwartz JB. Spheronization II: Drug Release from Drug Diluent Mixtures. Drug Dev Ind Pharm. 1985; 11: 1837–57.
8. Digenis GA, 1994. The In Vivo behaviour of multiparticulate versus single-unit dosage formulations Multipaticulate Oral Drug Delivery Marcel Dekker: New York; Ghebre-Sellassie. I (ed.): 333–55...
9. Evdokia S. Korakianiti, Dimitrios MK, Paraskevas PD, and Nikolaos HC, 2000 Optimisation of the pellitization process in a Fluid-bed Rotor granulator using experimental design Apps Pharm Sci Tech; 1(4): 71–5.
10. Extrusion-Spheronization (cited 2008 Dec 29); Available from: spheronizer.com/html/spheronization_stages.html
11. Fielden KE, Newton JM, and Rowe RC. The influence of moisture content on spheronization of extrudate processed by a ram extruder J. Pharm., 1993; 97: 79–86.
12. Flament MP, Dupont G, Leterme P, Farah N, and Gayot, A. Development of 400-m pellets by extrusion-spheronization Application with Gelucire 50/02 to produce a sprinkle form. Drug Dev. Ind. Pharm., 2004; 30: 43–51.
13. Follonier N, Doelker E, 1992. Biopharmaceutical comparison of oral multiple-unit and single-unit sustained-release dosage forms STP Pharm Sci.; 2: 141–5.
14. Ghebre-Sellassie I, Knoch A. Pelletization Techniques, Encyclopaedia of Pharmaceutical Technology Informa Healthcare, 3rd ed., 2002.
15. Harrison PJ, Newton JM, and Rowe RC. The application of capillary rheometry to the extrusion of wet powder masses J. Pharm., 1987; 35: 235–42.
16. Millili GP, Schwartz JB. The strength of microcrystalline cellulose pellets: The effect of granulating with water/ethanol mixtures Drug Dev. Ind. Pharm., 1990; 16:141–26.
17. Steckel H, Mindermann-Nogly F. Production of chitosan pellets by extrusion spheronization J. Pharm. Biopharm., 2004; 57:107–13.
18. Koo OMY, and Huang PWS. The influence of microcrystalline cellulose grade on shape and shape distributions of pellets produced by extrusion-spheronizationPharm.Bull., 2001; 49: 1383–7.
19. Wan LSC, Heng PWS, and Lee CV. Spheronization conditions on spheroid shape and size J. Pharm., 1993; 96: 59–65.
20. AM Ahuja., A Baboota S. Bhavna. Bali.V., Saigal.N., and Ali.J. Recent Advances in Pelletization Technique for Oral Drug Delivery: A Review Current Drug Delivery, 2009; 6(1):122–129.
21. Lecomte F, Siepmann J, Walther M, and Macrae JR. Polymer blends used for the coating of multiparticulates: Comparison of aqueous and organic coating techniques. Pharmaceut Res. 2004;21.
22. Kleinebudde P., Knop K., 2007. Direct pelletization of pharmaceutical pellets in fluid bed processes Granulation. Elsevier. Seville. JPK. (ed.): 780-811.
23. Husson, I., Leclerc, B., Spenlehauer, G., Veillard, M., Pouisieux, F., and Couarraze, G. Influence of size polydispersity on drug release from coated pellets J. Pharm., 1992; 86:113–21.
24. Wiwattanapatapee R., Pengnoo A., Kanjanamaneesathian M., Matchavanich L., and Janatharangsri A. Floating pellets containing bacterial antagonists for control of sheath blight in rice formulations, viability, and bacterial release studies Control. Release, 2004, 95, 455–61.
25. Mezreb N., Charrueau C., Boy P., Allain P., Chaumeil J.C. Production of Carbopol 974P and Carbopol 971P pellets by extrusion and spheronizationOptimisation of the processing parameters and water content. Dev. Ind. Pharm., 2004; 30: 481–90.
26. Lian-Dong H., Yang L., Xing T., and Qian Z. Preparation and in vitro and in vivo evaluation of sustained-release metformin hydrochloride pellets J. Pharm. Biopharm., 2006; 64: 185–92.
27. Sood A., Ashokraj Y., and Panchagnula R. Multiunit matrix-based particulate systems (MUMPS) for controlled delivery of nifedipine Formulation development using extrusion spheronization and in vitro evaluation Tech., 2004; 28: 62–71.
28. Veiga F., Pina M., and Sousa J.J. A study on the effect of drying techniques on the mechanical properties of pellets and compacted pellets Eur. J. Pharm. Sci., 2004; 21: 119–29.
29. Basak, S. C., van Mil, J. F., & Sathyanarayana, D. (2009). The changing roles of pharmacists in community pharmacies: perception of reality in India. Pharmacy world & science, 31, 612-618.
30. Johansson B., Alderborn G. The degree of pellet deformation during compaction and its relationship to the tensile strength of tablets formed of microcrystalline cellulose pellets Int J Pharmaceut. 1996; 132(1-2): 207–20.
31. Johansson B, Nicklasson F, and Alderborn G. Effect of pellet size on degree of deformation and densification during compression and on compatibility of microcrystalline cellulose pellets Int J1998; 163(1-2): 35–48.
32. Al-Hashemi H.M.B., Al-Amoudi O.S.B. A review of the angle of repose of granular materials Powder Technol. 2018; 330:397–417. [Google Scholar]
33. Alibolandi M., Rezvani R., Farzad S.A., Taghdisi S.M., Abnous K., and Ramezani M. Tetrac-conjugated polymersomes for integrin-targeted delivery of camptothecin to colon adenocarcinoma in vitro and in vivo Int. J. Pharm. 2017;532(1):581–594.
34. Amidon S., Brown J.E., and Dave V.S. Colon-targeted oral drug delivery systems: design trends and approaches AAPS PharmSciTech. 2015;16(4):731–741.
35. Birben E., Sahiner U.M., Sackesen C., Erzurum S., and Kalayci O. Oxidative stress and antioxidant defence World Allergy Organ J. 2012;5(1):9.
36. Borrelli A., Schiattarella A., Bonelli P., Tuccillo F.M., Buonaguro F.M., and Mancini A. BioMed Research International; 2014. The functional role of MnSOD as a biomarker of human diseases and the therapeutic potential of a new isoform of a human recombinant MnSOD; p. 2014.
37. Cui Z., Lockman P.R., Atwood C.S., Hsu C.H., Gupte A., Allen D.D., and Mumper R.J. Novel D-penicillamine-carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases Eur. J. Pharm. Biopharm. 2005;59(2):263–272.
38. Elyagoby A., Layas N., and Wong T.W. Colon-specific delivery of 5-fluorouracil from zinc pectinate pellets through in Situ intracapsularethylcellulose-pectin plug formation J. Pharm. Sci. 2013;102(2):604–616.
39. Fitzmaurice C., Akinyemiju T.F., Al Lami F.H., Alam T., Alizadeh-Navaei R., Allen C., Alsharif U., Alvis-Guzman N., Amini E., Anderson B.O., Aremu O. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups, 1990–2016: a systematic analysis for the global burden of disease study JAMA Oncology. 2018;4(11):1553–1568.
40. Foroushani M.S., Shervedani R.K., Kefayat A., Torabi M., Ghahremani F., Yaghoobi F. Folate-graphene chelate manganese nanoparticles as a theranostic system for colon cancer MR imaging and drug delivery: in-vivo examinations J. Drug Deliv. Sci. Technol. 2019; 54:101223.
41. He W., Du Q., Cao D.Y., Xiang B., and Fan L.F. Study on colon-specific pectin/ethyl cellulose film-coated 5-fluorouracil pellets in rats Int. J. Pharm. 2008;348(1-2):35–45.
42. Hileman E.A., Achanta G., and Huang P. Superoxide dismutase: an emerging target for cancer therapeutics Expert Opin. Ther. Targets. 2001;5(6):697–710. [PubMed] [Google Scholar]
43. Hwang I.T., Chung Y.M., Kim J.J., Chung J.S., Kim B.S., Kim H.J., Kim J.S., Do Yoo Y. Drug resistance to 5-FU linked to reactive oxygen species modulator 1. Biochem. Biophys. Res. Commun. 2007;359(2):304–310.
44. Kamal T., Sarfraz M., Arafat M., and Mikov M., Cross-linked guar gum and sodium borate-based microspheres as colon-targeted anticancer drug delivery systems for 5-fluorouracil. Pak. J. Pharm. Sci. 2017;30.
45. Kamalaldin N.A., Jaafar M., Zubairi S.I., and Yahaya B.H. 2017. Physico-Mechanical Properties of HA/TCP Pellets and Their Three-Dimensional Biological Evaluation in Vitro.
46. Kim H.J., Lee J.H., Kim S.J., Oh G.S., Moon H.D., Kwon K.B., Park C., Park B.H., Lee H.K., Chung S.Y., Park R. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity J. Neurosci. 2010;30(11):3933–3946.
47. Lu J., Kan S., Zhao Y., Zhang W., and Liu J. Novel naproxen/esomeprazole magnesium compound pellets based on acid-independent mechanisms: in vitro and in vivo evaluation. Drug Dev. Ind. Pharm. 2016;42(9):1495–1503.
48. Narayanaswamy R., Mohd E.S.A.N. Phytic acid (MYO-INOSITOL hexaphosphate)—a promising pharmaceutical agent: a review Asian J. Pharmaceut. Clin. Res. 2018;11(11):42–46.
49. Pandey S., Swamy S.V., Gupta A., Koli A., Patel S., Maulvi F., and Vyas B. Multiple response optimisation of processing and formulation parameters of pH-sensitive sustained-release pellets of capecitabine for targeting the colon J. Microencapsul. 2018:1–13.
50. Perry J.J.P., Shin D.S., Getzoff E.D., and Tainer J.A. The structural biochemistry of the superoxide dismutasesBiochimicaetBiophysicaActa (BBA)-Proteins and Proteomics. 2010;1804(2):245–262.
51. Persson H., Türk M., Nyman M., and Sandberg A.S. Binding of Cu2+, Zn2+, and Cd2+ to inositol tri-, tetra-, penta-, and hexaphosphates J. Agric. Food Chem. 1998;46(8):3194–3200.
52. Pundlikrao P., Rajput P.M. Stability study of microemulsions and their use in the formulation of pellets with enhanced solubility and dissolution efficiency of nevirapine Indian J. Nov. Drug Deliv. 2017;9(4):223–235.
53. Reddy N.R., Sathe S.K., and Salunkhe D.K., Vol. 28, Academic Press, 1982. Phytates in legumes and cereals, pp. 1–92 (Advances in Food Research).
54. Shanmugam S., Reddy J.S., and Vetrichelvan T. (2013) Formulation and in Vitro Evaluation of 5-Fluorouracil Microcapsules by Using Different Methods of microencapsulation.
55. Sharma A., Goyal A.K., and Rath G. Development and characterization of gastroretentive high-density pellets lodged with zero-valent iron nanoparticles J. Pharm. Sci. 2018
56. Sreelatha D., Brahma C.K. Colon targeted drug delivery: a review of primary and novel approaches J. Glob. Trends Pharm. Sci. 2013;4(3):1174–1183.
57. Tan Y.L., Huang C.H., Guo Z.X., and Yu J. Morphology and mechanical properties of polyamide 6 and polystyrene blends prepared by diffusion and subsequent polymerization of styrene in polyamide 6 pellets Materials. 2018;11(5):776.
58. Vuik F.E., Nieuwenburg S.A., Bardou M., Lansdorp-Vogelaar I., Dinis-Ribeiro M., Bento M.J., Zadnik V., Pellisé M., Esteban L., Kaminski M.F., Suchanek S. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years Gut. 2019 gutjnl-2018.
59. Wairkar S.M., Gaud R.S. Formulation and in vitro characterization OF sustained release matrix pellets OF nateglinide Int. J. Pharm. Sci. Res. 2016;7(7):2925.
60. Zhao H., Sun D., Tang Y., Yao J., Yuan X., and Zhang M. Thermo/pH dual-responsive core-shell particles for apatinib/doxorubicin-controlled release: preparation, characterization, and biodistribution J. Mater. Chem. B. 2018;6(46):7621–7633.
Statistics
169 Views | 171 Downloads
How to Cite
Shubham M. Waghmare, Namrata N. More, Suraj R. Jagtap, Trushali A. Mandhare, Gaurav K. Soni, and Ajay Y. Kale. “Techniques and Evaluation Tests for Colon Cancer Treatment Using Pellets: A Review”. Current Research in Pharmaceutical Sciences, Vol. 13, no. 4, Mar. 2024, pp. 157-66, doi:10.24092/CRPS.2023.130401.