

Current Research in Pharmaceutical Sciences

Available online at www.crpsonline.com

ISSN: 2250 - 2688

Received: 19/12/2023 Revised: 30/12/2023 Accepted: 31/12/2023 Published: 08/01/2024

Sakshi A. Jadhav, Nikita A. Bhilare, B. Chandanshive, Gurappa K. Dyade

Department of Post Graduate in Pharmaceutical Quality Assurance, SVPM'S College of Pharmacy, Malegaon (BKII) Baramati, Pune, Maharashtra, India 413115

Amit S. Lunkad

Department of Pharmaceutical Chemistry, SitabaiThite College of Pharmacy, Shirur, Pune, Maharashtra, India 412210

Correspondence

Gurappa K. Dyade

Department of Post Graduate in Pharmaceutical Quality Assurance, SVPM'S College of Pharmacy, Malegaon (BKII) Baramati, Pune, Maharashtra, India 413115

Email

pharmacyresearchsvpmcop@gmail.com

DOI: 10.24092/CRPS.2023.130404

Website: www.crpsonline.com

Quick Response Code:

Sustainable Green Analytical Chemistry: Spectrophotometric Method Development of Dapagliflozin and Omeprazole by Using Eco-friendly Solvent

Sakshi A. Jadhav, Nikita A. Bhilare, B. Chandanshive, Gurappa K. Dyade, Amit S. Lunkad

ABSTRACT

The present research's aim was to develop analytical method utilizing ecologically suitable solvent which enhances solubility of analyte, sensitivity of the method etc. An analytical method was developed for the estimation of dapagliflozin (DGZ) and omeprazole (OPZ) by using aqueous 0.1 N HCl on the UV-VIS spectrophotometer. Wavelengths 223 nm and 282.5 nm were set to measure absorbance of DGZ and OPZ respectively. The results of different spectral characteristic techniques were examined to select the parameters and the design was validated against the ICH Q 2 R1 regulatory guidelines. The linearity of the drug was determined at a concentration of 1 to $50\mu g/ml$ and 1 to $32\mu g/ml$ for DGZ and OPZ respectively. The accuracy was found within acceptable limit with standard deviation 1.1874 to 6.4984 for DGZ and 0.1401 to 0.9843 for OPZ; and the assay study data was found 99.77 % for DGZ and 97.92 % for OPZ. The stability study of the method was performed out by minute variation in the wavelength, scan speed. The developed method is rigid, robust and efficient for the estimation of DGZ and OPZ from their respective dosage form. The effort was made to develop green or ecofriendly analytical method utilizing hydrotropic solvent for water insoluble drug dapagliflozin and omeprazole.

Key words: Green method, Dapagliflozin, Omeprazole, analytical method, eco-friendly solvent, UV spectroscopy

1. INTRODUCTION

The prime objective of the present research was to use ecologically suitable solvent and to enhance the solubility of analyte. The water solubility of the therapeutically active drug is an important property as it controls its solubility, absorption, and in vivo activity; and also restricts use of organic solvent in method development. Articles 2,3 is deliberately showing significance of agents like hydro tropes in solubilization of very poor water-soluble drug. The development of eco-friendly method by avoiding organic solvent could be termed as economical green method. There is consistently pressure from environmental department to minimize hazardous and volatile solvent content in the waste which seriously affects environment. Use of hydrotropic solutions, supercritical fluids in the organic synthesis curbs use of organic solvent in view point of green chemistry. Capability of hydro tropes to increase the water solubility of organic compounds up to 200 times is also reported. In literature review it is revealed that green FT-IR method⁶, eco-friendly methods are suitable for analytical purpose; and green analytical methods are preferred over analytical methods using harmful organic solvent for environment. Drugs dapagliflozin and omeprazole were selected for this research purpose study due to their poor water solubility.

Dapagliflozin (DGZ) is a (1S)-1, 5-anhydro-1-C-[4-chloro-3-[(4-ethoxyphenyl) methyl] phenyl]-D-glucitol ¹⁰ antidiabetic and pharmacologically sodium-glucose co-transporter 2 inhibitor that enhances urinary excretion of glucose by suppressing renal reabsorption of glucose.

Many analytical methods have been published for the estimation of DGZ alone or in combined state with other anti-diabetic agents in pharmaceutical dosage form includes lonely UV spectroscopic method ¹², with other drug UV spectroscopic method¹³⁻¹⁶, HPLC method ^{17,18}, stability indicating HPLC ¹⁹⁻²², QbD bio analytical²³ UHPLC bio analytical ²⁴, kinetic study UHPLC method²⁵, stability indicating UPLC method ²⁶, UPLC DAD bio analytical²⁷, LC-MS/MS bio analytical method²⁸⁻³⁰and critical review on bio analytical³¹.

Omeprazole (OPZ) chemically is 6-methoxy-2- [[(4-methoxy-3, 5-dimethyl-2-pyridinyl) methyl] sulfinyl]-1H-benzimidazole¹⁰ and is proton pump inhibitor, suppresses secretion of gastric acid by inhibiting the enzyme system of H/K ATPase the proton pump of the gastric parietal cells. It is used in aspiration syndrome, dyspepsia, GRD, peptic ulcer and zollinger-ellison syndrome¹¹. The drug OPZ is official in recently published British Pharmacopoeia³² and Indian Pharmacopoeia³³. Chemical structure of drug is shown in (Figure 1).

Various analytical methods have been reported for the estimation of OPZ alone or in combination with other GIT agents in pharmaceutical dosage form includes UV spectroscopic method ³⁴, RP-HPLC methods^{35,41}, stability indicating HPLC method^{42,43}. DOE based HPLC⁴⁴, bio analytical HPLC chromatographic method^{45,47}, UPLC-TOF analyzer⁴⁸, HPTLC method^{49,50} and Densitometric HPTLC method.⁵¹

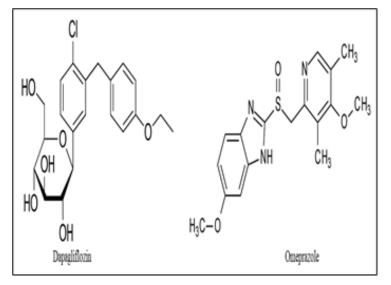


Figure 1: Chemical structure of Drug molecule

For analytical method validation ICH Q2 (R1) has given various method performance characteristics. 52,53

2. MATERIALS AND METHODS

2.1 Instrumentation

Analysis was performed using a 10 mm matched quartz cell with a Shimadzu Double-beam UV–Visible spectrophotometer (Shimadzu, Kyoto, Japan) with a spectral bandwidth of 2 nm and an accurate wavelength of ± 1 nm. The analyte was weighed and degassed using an Afcoset balance (The Bombay Burmah Trading Corpo Ltd), an electronic balance model ER 200A with an accuracy of \pm 0.1 mg using a 1.8 Liter ultrasonic cleaner (Labman Scientific Instruments Chennai).

2.2 Reagents and Chemicals

Pure pharmaceutical sample of Dapagliflozin from Smruthi organic Ltd Solapur and Omeprazole from BLD pharmatech Co Hyderabad were procured as a gift samples and the marketed commercial formulation Zucapride-10mg containing DGZ and Omez-20mg containing omeprazole were procured from local market. HCl acid AR and distilled water were utilized for preparation of solvent.

2.3 Solvent Selection

Research article⁵⁴ was focused on techniques to be adopted while selection of suitable solvent. DGZ is freely soluble in DMSO, ethanol and DMF, very slightly soluble in water. OPZ is liberally soluble in dichloromethane, chloroform, soluble in ethanol 95%, dilute aqueous solutions of acid, alkali and very slightly soluble in water. Solubility of the procured drug wasstudied in 0.1N HCl, ethanol and 0.1 N NaOH; and to understand characteristic nature of spectra each solution of known conc of analyte was scanned in UV range. The recorded spectra in these solvents are shown in (Figure 2 and 3).

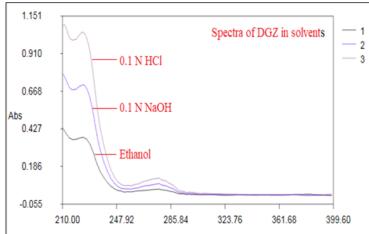


Figure 2: UV-VIS spectra of Dapagliflozin in selection of solvent study

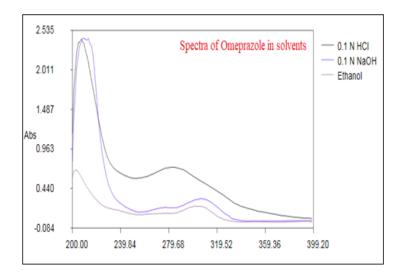


Figure 3: UV-VIS spectra of Omeprazole in selection of solvent study

2.4 Preparation of Stock Solutions and Standard Solutions

10~mg of pure DGZ drug and OPZ were accurately and separately weighed; and transferred into separate 50 ml volumetric flask. Dissolved into 0.1 N HCl solution and volume was made to 50 ml with solvent. Working standard solution of DGZ and OPZ $20\mu g/ml$ was obtained by diluting aliquot of stock solution.

2.5 Selection of Wavelength and Conc Range

From UV spectra it was found that DGZ and OPZ have measurable absorbance at 223 and 282.5 nm. From the nature of spectra working conc. range 1 to $50\mu g/ml$ and 1 to 12mcg/ml ($\mu g/ml$) was selected in solvent for DGZ and OPZ respectively. Also, drug solution was prepared simulated to marketed formulation. The observations discussed above lead us to select and use the main points listed in Table 1; the process has been validated against ICH guidelines and by analyzing as per industry standards.

Table 1: Selected critical parameter for UV-VIS analytical method of DGZ and OPZ

Parameter	Selected variables for DGZ	Selected variables for OPZ
Wavelength range	400-200 nm	400-200 nm
Wavelength	223 nm	282.5 nm
Solvent	0.1 N HCl	0.1 N HCl
Scan speed	Fast	Fast
Sampling interval	± 0.2 nm	± 0.2 nm

2.6 Experimental Method for Estimation

Analytical simple calibration curve method was found suitable for the estimation of the both drugs individual formulation/dosage form. The calibration curve method comprises use of the stock solution to prepare the series of six standard solutions within the working concentration range and record the measured absorbance at the selected wavelength; it is based on the calibration curve diagram, i.e. the relationship between absorbance and concentration. The best linear relationship between concentration and absorbance was determined from triplicate calibration curves prepared from different stock solutions. Used the regression equation Y = mX + c (where m is the slope and c are the intercept) to calculate the sample concentration. Also, spectrophotometers quantitative method was utilized to know the conc. of sample/formulation solution.

2.7 Validation of the Method

In order to obtain an analysis plan for this method, the main options must meet the effectiveness of the analysis method. To comply with these ICH guidelines, Q2 R1 is used to examine effectiveness by significance. Procedure validated according to ICH guidelines. 52,53

2.8 System Suitability

System suitability study was conducted to demonstrate the appropriateness of the designed procedure under consideration for the analytical method. Six replicates each of DGZ and OPZ working standard solutions having conc $10\mu g/ml$ were prepared separately and absorbance was recorded; SD and % RSD of the response were calculated. Stability of the solution was also studied by bench top stability at laboratory temp.

DGZ and OPZ activity levels were prepared in 6 replicates at a concentration level of $10\mu g/ml$ and absorbance was recorded; SD and %RSD of responses were calculated. Chemical stability was also examined by benchtop stability at laboratory temperature.

2.9 Linearity

The linearity of an analytical method is studied by obtaining response i.e. absorbance which should be directly proportional to the conc of analyte. Series of working standard solutions were prepared in conc. range from 1 to $50\mu g/ml$ (DGZ) and 1 to $12\mu g/ml$ (OPZ) and scanned from 400 to 200 nm range in spectrum mode of the spectrophotometer, absorbance of the standard solutions were recorded at 223 and 282.5 nm for DGZ and OPZ respectively in spectrum order. Microsoft office excel software is the tool, was used to obtain the standard regression

curve and its analysis as slope, intercept, and correlation coefficient.

2.10 Assay of Formulation

Content of drug i.e. active ingredient in the formulation was carried out by proposed method and process was validated by determining statistical parameters.

2.10.1 Estimation of Formulations by Calibration Curve Method

Weighed and powdered the tablets; weighed out the tablet powder equal to 10 mg DGZ and transferred to a 50 ml volumetric flask. Dissolved in 0.1N HCl solvent and bring to volume with solvent. Further solution was filtered through filter paper Whatman No 40 and aliquot of filtered solution was diluted to obtain sample solution. Solution was scanned in the range of 400 to 200 nm, recorded absorbance of sample solution at 223 nm in spectrum order.

Similar process was followed for estimation of OPZ from the dosage form and for recording absorption wavelength 282.5 nm was set in the spectrum mode. Obtained absorbance was utilized to calculate unknown conc of formulation; and results are statistically validated to obtain % of nominal conc, standard deviation and % of RSD.

2.10.2 Accuracy and Precision

The analytical method's accuracy is expressed as the closeness of an agreement between test result and true result. Recovery study is the process to check accuracy and performed by i.e. standard addition method; diluted sample solution of DGZ and OPZ was prepared separately and standard solutions added in 80,100 and 120% proportionate to the sample solution. Three replicates at each of these three levels were obtained and absorbance recorded; then % of conc, SD and RSD of replicates were calculated.

To ascertain precision of the method, process was carried out by performing assay of tablet six times; also,interday and intraday precision was studied to achieve the reproducibility in result.

2.10.3 Limit of Detection (LOD) and Limit of Quantitation (LOQ)

The LOD, LOQ of DGZ, OPZ by this proposed method were determined using calibration graph method and formula $3.3\sigma/s$ and $10~\sigma/s$ was used to obtain LOD and LOQ respectively where σ is the standard deviation of calibration curve and s is the slope of regression line.

2.10.4 Robustness and Ruggedness

It is measure of capability of any analytical procedure to remain unaffected by small but deliberate variations in method parameter.

3. RESULTS AND DISCUSSION

The development process consists of several steps; Solvent and sample selection are important. The use of environmentally friendly solvents has attracted great attention due to their low cost, convenience and environmental friendliness. The substance to be analyzed must have satisfactory solubility in the chosen solvent. The chemical structure and physicochemical property of the drug are available in the literature to guide the use of the appropriate solvent in this method. Solubility of DGZ and OPZ was performed in each solvent; and in 0.1 N HCl solvent both drugs were shown appreciable, measurable and stable absorbance as compare to other solvent.

3.1 System Suitability

The absorbance of six replicate of standard solutions (10 and 8 μ g/ml) are shown in Table 2. The calculated SD of DGZ and OPZ were found within acceptable limits and therefore meet the system suitability requirements and appropriateness of the method.

Table 2: System suitability study of DGZ and OPZ

Sr.	Conc in	Absorbance	Conc in µg	Absorbance
No	μg /ml	of DGZ	/ml	of OPZ
1	10 μg /ml	0.3098	8 μg /ml	0.2831
2	10 μg /ml	0.2808	8 μg /ml	0.3212
3	10 μg /ml	0.3090	8 μg /ml	0.3121
4	10 μg /ml	0.2852	8 μg /ml	0.3198
5	10 μg /ml	0.3098	8 μg /ml	0.3215
6	10 μg /ml	0.2975	8 μg /ml	0.3204
	SD	0.01535	SD	0.003914

3.2 Linearity

The overlay spectra acquired in linearity study was reported in Figure 4 and 5 and the designed calibration curve of both analytes was found to be linear in the selected conc. range as shown in Figure 6. The regression equation of line and its parameters slope, r2 value and intercept are tabulated in Table 3, which proved the linear relationship between amount of drug in solution and obtained response.

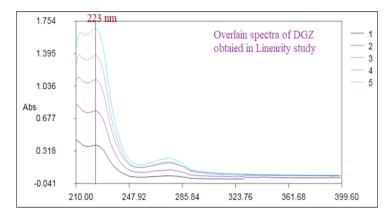


Figure 4: UV-VIS overlain spectra of DGZ in linearity study

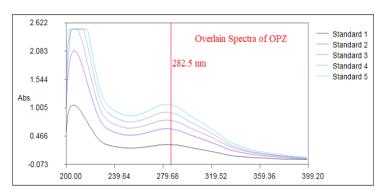


Figure 5: UV-VIS overlain spectra of OPZ in linearity study

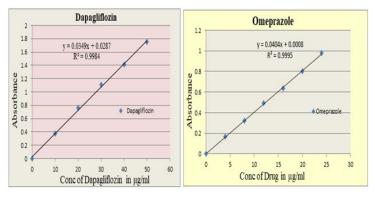


Figure 6: Calibration curve of Dapagliflozin and omeprazole

Table 3: Parameters of regression equation obtained in Microsoft excel office

Parameters	DGZ	OPZ	
Detection wavelength	223 nm	282.5 nm	
Beer's law limit (µg/ml)	$1-50~\mu g/ml$	$1-24\mu g/ml$	
Correlation coefficient (r ²)	0.9984	0.9995	
Regression equation $(y = mx + c)$	Y = 0.0349 X + 0.0287	Y= 0.0404 + 0.0008	

3.3 Assay

The assay was performed and processed by calibration curve method. From the obtained spectra of dosage form, calculated % of nominal conc. and SD. The obtained data was found within acceptable limits are summarized in Table 4. The results indicated applicability of the method for estimation of formulation.

Table 4: Results of assay of formulation by proposed method

Formu lation	Drug	Label Claim (mg/Tabl et)	Amount found/m g; n=6	Drug Conte nt %	Std Devia tion	% RSD
Zucap ride- 10	DGZ	10 mg	9.977 mg	99.77 %	3.037	3.04 42
Omez- 20	OPZ	20 mg	19.58 mg	97.92 %	1.135	0.41 942

3.4 Accuracy and Precision

The results of accuracy are summarized in Table 5, the obtained results were consistent, within acceptable limit; and methods accuracy was justified by calculating % drug content. The precision study included multiple assays of solutions performance as per guidelines; further the reproducibility in result was studied by interday and intraday precision. The values obtained SD and % RSD was shown methods precision and are summarized in Table 5.

Table 5: Results of accuracy and precision

Sr. No	Paramete r	Level of study	Dat a Titl e	Obtd. Data	S.D.	RSD
1	Precision study of DGZ	Intraday Precision Interday precision	Mea n of Abs n= 6	106.08 % 102.96 %	5.498 2 1.205 5	5.182 7 1.168 9
2	Accuracy study of DGZ	80 % 100 % 120 %	% Puri ty	106.30 % 98.49 % 103.99 %	4.265 9 1.187 4 6.498 4	4.013 1 1.205 5 6.248

Sr. No	Paramet er	Level of study	Data Title	Obtd Data	S.D.	RSD
1	Precision study of	Intraday Precision	Mean of Abs	102.42 8	0.984	0.961
	OPZ	Interday precision	n= 6	94.374	0.644	0.682
		80%		102.89	0.583 5	0.575 5
2	Accuracy study of OPZ	100%	% Purity found	103.49 12	0.140	0.135
		120%		103.76	0.610	0.627

3.5 Limit of Detection (LOD) and Limit of Quantitation (LOQ)

The LOD and LOQ of DGZ and OPZby the proposed method was found within acceptable limit.

3.6 Robustness and Ruggedness

Study of robustness was carried out and capacity of designed analytical procedure to measure drug was remain unaffected by small but deliberate variations in method parameter like variation in the wavelength \pm 2 nm, variation in the solvent strength by \pm 0.1 %. The analytical method was found rugged during the stage of development; similarly, the result was achieved by performing the analysis by different analyst.

4. CONCLUSION

The analytical method was designed with environmentally friendly, easily available aqueous 0.1 N HCl solvent. Dapagliflozin and Omeprazole were estimated from their respective formulation by the proposed method and satisfactory results were obtained. This method's reproducibility in the result; and obtained results data within acceptable limits given in the pharmacopoeia is confirmed validity of the method. So, this validated method is economical, precise, accurate, robust and reproducible hence can be routinely used for estimation of both the drugs from the dosage form.

ACKNOWLEDGEMENT

Authors are thankful to Smruthi organic Ltd Solapur for providing pure drug dapagliflozin and to BLD Pharmatech Co Hyderabad for providing omeprazole as a gift sample. Authors are thankful to Management, Principal SVPM'S college of Pharmacy Malegaon BKII Baramati Dist. Pune for providing facilities for research.

REFERENCES

- Sabitha Reddy P, Swetha C, Ravindra Reddy K. Effect of Hydrotropes and Physical Properties on Solubility of Glibenclamide. Research J. Pharma. Dosage Forms and Tech. 2011; 3(6): 294-297.
- Nilesh S. Kulkarni, Sanghamitra B. Ghule, Shashikant N. Dhole. A Review on Hydrotropic Solubilization forPoorly Water Soluble Drugs: Analytical Application and Formulation Development. Research J. Pharm. and Tech. 2019; 12(7):3157-3162.
- Gurumurthy V., Deveswaran R., Bharath S., Basavaraj B.V., Madhavan V.
 Application of Hydrotropic Solubilisation in Simultaneous Estimation of Atenolol and Amlodipine Besylate. Asian J. Research Chem. 5(1): January 2012; Page 57-60.
- Ceema Mathew, Sunayana Varma. Green Analytical Methods based on Chemometrics and UV spectroscopy for the simultaneous estimation of Empagliflozin and Linagliptin. Asian Journal of Pharmaceutical Analysis. 2022; 12(1):43-8.
- Reem H. Obaydo, Amir Alhaj Sakur. A Green Analytical Method using Algorithm (PCCA) for Extracting Components' Contribution from Severely Overlapped Spectral Signals in Pharmaceutical Mixtures. Research J. Pharm. and Tech 2019; 12(9):4332-4338.
- Parixit Prajapati, Chandni Chandarana. Fourier Transform Infrared Spectrophotometry: An Eco-friendly green tool for quantification of Omeprazole in Pharmaceutical formulation. Research Journal of Pharmacy and Technology. 2022; 15(8):3531-4.
- Haripriya A., Sirisha N., Vishali S., Ramakrishna K., Panikumar A.D..
 Validated Eco Friendly Derivative Spectrophotometric Method for Valsartan and Hydrochlorothiazide Combined Tablet Dosage Form. Asian J. Research Chem. 5(8): August, 2012; Page 1074-1077.
- Remi. S. L, Joyamma Varkey, R. K. Maheshwari, A. Jayakumaran Nair. A
 Novel Ecofriendly, cost effective mobile phase for HPLC- Simultaneous
 estimation and Validation of Paracetamol and Diclofenac sodium in Bulk and
 Pharmaceutical Formulation by RP-HPLC using Hydrotropic Solution as
 Mobile phase. Asian J. Pharm. Res. 2020; 10(3):163-170.

- Yashwant S. Surve, Dharmesh G. Panchal, R.S. Lokhande. A novel methodology for the synthesis of teriflunomide using hydrotropes as a reaction media. Research J. Pharm. and Tech. 2015; 8(9): 1247-1249.
- The Merck Index, An Encyclopaedia of chemicals, drugs and Biological, 15th edition, the royal society of chemistry Cambridge UK, 2013, pp. 506, 1269.
- Alison Brayfield, Martindale (The complete drug reference), 39th edition,
 Pharmaceutical press London, 2017, A: pp. 476, 1902.
- Mante G V, Gupta K R, Hemke A T. Estimation of Dapagliflozin from Its Tablet Formulation by UV-Spectrophotometry. Pharm Methods. 2017; 8(2):102-7.
- 13. Jani B R, Shah K V, Kapupara P P. Development and Validation of UV Spectroscopic Method for Simultaneous Estimation of Dapagliflozin and Metformin Hydrochloride a Synthetic Mixture. International Journal of Research and Development in Pharmacy & Life Sciences. 2015; 4(3):1569-76.
- 14. Sen AK, Khatariya SB, Sen DB, Maheshwari RA, Zanwar AS, Velmurugan R. Various Innovative UV Spectroscopic Methodologies for Concurrent Estimation of Dapagliflozin And Vildagliptin In Combined Tablet. Journal of Applied Pharmaceutical Science. 2023; 13(9):213-23.
- 15. Bhavyasri K, Surekha T, Sumakanth M. A Novel Method Development and Validation of Dapagliflozin And Metormin Hydrochloride Using Simultaneous Equation Method By UV–Visible Spectroscopy in Bulk and Combined Pharmaceutical Formulation Including Forced Degradation Studies. Journal of Pharmaceutical Sciences and Research. 2020; 12(8):1100-5.
- 16. Barbude P, Tawar M, Burange P. Method Development Using A UV Visible Spectrophotometer for The Simultaneous Estimation of Metformin (Met), Saxagliptin (Sxg), And Dapagliflozin (Dgf) In Marketed Formulation. Asian Journal of Pharmaceutical Analysis. 2022; 12(4): 243-7.
- Rao B R, Rao V V, Venkateswarlu B S. Rp-Hplc Method for Simultaneous Estimation of Dapagliflozin And Saxagliptin In Bulk Samples. Journal of Pharmaceutical Sciences and Research. 2019; 11(1):254-7.
- Debata J, Kumar S, Jha SK, Khan A. A New RP-HPLC Method Development and Validation of Dapagliflozin in Bulk and Tablet Dosage Form. Int J Drug Dev Res. 2017; 9(2):48-51
- 19. Deepan T, Dhanaraju MD. Stability Indicating Hplc Method for The Simultaneous Determination of Dapagliflozin And Saxagliptin In Bulk and Tablet Dosage Form. Current Issues in Pharmacy and Medical Sciences. 2018; 31(1):39-43.

- 20. Kommineni V, Chowdary K P, Prasad S V. Development of A New Stability Indicating Rp-Hplc Method for Simultaneous Estimation of Saxagliptine and Dapagliflozin and its Validation as Per ICH Guidelines. Indo American journal of pharmaceutical sciences. 2017; 4(09):2920-32.
- 21. Singh N, Bansal P, Maithani M, Chauhan Y. Development and Validation of a Stability-Indicating RP-HPLC Method for Simultaneous Determination of Dapagliflozin and Saxagliptin in Fixed-Dose Combination. New Journal of chemistry. 2018; 42(4):2459-66.
- 22. Manoharan G, Ismaiel A M, Ahmed Z M. Stability-Indicating Rp-Hplc Method Development for Simultaneous Determination and Estimation of Dapagliflozin In Raw and Tablet Formulation. Chem Res J. 2018; 3(2):159-64.
- 23. Ameeduzzafar, et al. Quality by Design (Qbd) Based Development and Validation Of Bioanalytical Rp-Hplc Method For Dapagliflozin: Forced Degradation And Preclinical Pharmacokinetic Study. Journal of Liquid Chromatography & Related Technologies. 2020; 43(1-2):53-65.
- 24. Kazi M, Alqahtani A A, Alsaadi B S, Alkholief M, Alanazi F K. UHPLC Method Development for Determining Sitagliptin and Dapagliflozin in Lipid-Based Self-Nanoemulsifying Systems as Combined Dose in Commercial Products and its Application to Pharmacokinetic Study of Dapagliflozin in Rats. Pharmaceutical Chemistry Journal. 2019; 53:79-87.
- 25. Zaghary WA, Mowaka S, Hendy M S. Kinetic Degradation Study of Dapagliflozin Coupled with UHPLC Separation in the Presence of Major Degradation Product and Metformin. Chromatographia. 2019; 82:777-89.
- 26. Bueno L, Manoel J W, Koetz M, Henriques A T, Steppe M, Schapoval E E. Simultaneous Analysis of Dapagliflozin and its Three Related Impurities by Stability-Indicating UPLC Method and in Vitro Toxicity Evaluation. Drug Analytical Research. 2022; 6(2):27-37.
- Mabrouk MM, Soliman SM, El-Agizy HM, Mansour FR. A UPLC/DAD Method for Simultaneous Determination of Empagliflozin and Three Related Substances in Spiked human Plasma. BMC Chemistry. 2019; 13:1-9.
- 28. Chan-Jiang E, Godoy R, Mennickent S, Vergara C, De Diego M. Determination of the Chemical Stability of Dapagliflozin by LC/DAD and MS/MS Methods. Journal of Chromatographic Science. 2022; 60(8):741-9.
- 29. Aubry AF, et al. Validated LC–MS/MS Methods for the Determination of Dapagliflozin, a Sodium-Glucose Co-Transporter 2 Inhibitor in Normal and ZDF Rat Plasma. Bioanalysis. 2010; 2(12):2001-2009.

- 30. Goday S, Shaik AR, Avula P. Development and Validation of a LC-ESI-MS/MS Based Bioanalytical Method for Dapagliflozin and Saxagliptin in Human Plasma. Indian Journal of Pharmaceutical Education and Research. 2018 Oct 1; 52(4): S277-86.
- Desai S, Maradia RB, Suhagia BN. A Comprehensive and Critical Review on Analytical and Bioanalytical Methods for Metformin Hydrochloride, Dapagliflozin, and Saxagliptin. Current Pharmaceutical Analysis. 2023; 19(1):20-50.
- British Pharmacopoeia, Medicines and Healthcare products regulatory agency London, 2019, II: 1231.
- Indian Pharmacopoeia, Govt of India, ministry of Health and family welfare,
 8th edition, The Indian pharmacopoeia commission Ghaziabad, 2018, III: pp.
 2783
- 34. Rivai H, Hasanah R, Azizah Z. Development and validation of omeprazole analysis methods in capsules with absorbance methods and areas under curves methods with UV-Vis spectrophotometry. International Journal of Pharmaceutical Sciences and Medicine. 2018; 3(3): 21-32.
- 35. Patel R K, Patel H R, Patel V A, Ganure A L, Patel L J. Development and validation of RP-HPLC method for simultaneous determination of omeprazole and diclofenac sodium in capsule dosage form. J. Pharm. Res. 2012; 5:1640-1642.
- 36. Trivedi HK, Patel MC. Development and Validation of a Precise single HPLC Method for Determination of Omeprazole and its related compound in pharmaceutical formulation. Int J Chem Tech Research. 2010; 2:1355-67.
- 37. Kayesh R, Sultan MZ, Rahman A, Uddin MG, Aktar F, Rashid MA. Development and validation of a RP-HPLC method for the quantification of omeprazole in pharmaceutical dosage form. Journal of Scientific Research. 2013; 5(2):335-42.
- Iuga C, Bojita M, Leucuta S E. Development of a validated RP-HPLC method for separation and determination of process-related impurities of omeprazole in bulk drugs. Farmacia. 2009; 57(5):534-41.
- 39. Nataraj KS, Duza MB, Pragallapati K, Kumar DK. Development and validation of RP-HPLC method for the estimation of omeprazole in bulk and capsule dosage forms. International current pharmaceutical Journal. 2012; 1(11):366-9.
- Gopalakrishnan S, Jothy K, Dhanalakshmi K. Analytical method development and validation of HPLC method for the determination of omeprazole in capsule dosage form. Elixir Appl. Chem. 2012; 52:11283-11286.

- 41. Schubert A, Werle AL, Schmidt CA, Codevilla C, Bajerski L, Chiappa R, Cardoso S G. Determination of omeprazole in bulk and injectable preparations by liquid chromatography. Journal of AOAC International. 2003; 86(3):501-504.
- 42. Koppala S, Ranga Reddy V, Anireddy JS. Development and validation of a novel stability-indicating RP-HPLC method for the simultaneous determination of related substances of ketoprofen and omeprazole in combined capsule dosage form. Journal of chromatographic science. 2016; 54(5):765-75.
- 43. Jha P, Parveen R, Khan SA, Alam O, Ahmad S. Stability-indicating high-performance thin-layer chromatographic method for quantitative determination of omeprazole in capsule dosage form. Journal of AOAC International. 2010; 93(3):787-791.
- 44. Manranjan VC, Yadav DS, Jogia HA, Chauhan PL. Design of experiment (DOE) utilization to develop a simple and robust reversed-phase HPLC technique for related substances' estimation of omeprazole formulations. Scientia Pharmaceutica. 2013; 81(4):1043-1056.
- 45. Lou J, Yu L, Li J, Liu J, Ding Q, Chen W, Sun L, Zhang Y. Development and validation of a HPLC method for the estimation of omeprazole in human plasma. Lat. Am. J. Pharm. 2016; 35(2):239-243.
- 46. Garcia-Encina G, Farranlo R, Puig S, Martínez L. Validation of an automated liquid chromatographic method for omeprazole in human plasma using on-line solid-phase extraction. Journal of pharmaceutical and biomedical analysis. 1999; 21(2):371-82.
- 47. Ahmad L, Iqbal Z, Nazir S, Shah Y, Khan A, Khan MI, Nasir F, Khan A. Optimization and validation of HPLC-UV method for simultaneous determination of omeprazole and its metabolites in human plasma: effects of various experimental conditions and parameters. Journal of liquid chromatography & related technologies. 2011; 34(15):1488-501.
- 48. Jadhav SB, Kumar CK, Bandichhor R, Bhosale PN. Development of RP UPLC-TOF/MS, stability indicating method for omeprazole and its related substances by applying two level factorial design; and identification and synthesis of non-pharmacopoeial impurities. Journal of Pharmaceutical and Biomedical Analysis. 2016; 118:370-379.
- 49. El-Kimary EI, Ragab M A. A validated high-performance thin-layer chromatographic method for the assay of two binary mixtures containing omeprazole or its isomer esomeprazole in pharmaceutical dosage forms. JPC– Journal of Planar Chromatography–Modern TLC. 2015; 28:74-82.

- 50. Patel B, Patel M, Patel J, Suhagia B. Simultaneous determination of omeprazole and domperidone in capsules by RP-HPLC and densitometric HPTLC. Journal of liquid chromatography & related technologies. 2007; 30(12):1749-1762.
- 51. Agbaba D, Novovic D, Karljiković-Rajić K, Marinković V. Densitometric determination of omeprazole, pantoprazole, and their impurities in pharmaceuticals. JPC-Journal of Planar Chromatography-Modern TLC. 2004; 17(3):169-172.
- ICH Expert working group. ICH Harmonized tripartite Guideline-Pharmaceutical Quality system Q 10. In current step 4Thversion. 2008; p. 1-21.
- ICH Expert working group. ICH Harmonized tripartite Guideline-Validation of analytical procedures: Text and methodology Q 2 R1. In current step 4 version. 2005; p. 1-17.
- 54. Byrne, F.P., Jin, S., Paggiola, G. et al. Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process. 2016; 4(7): 1-24. Doi.org/10.1186/s40508-016-0051-z