

# **Current Research in Pharmaceutical Sciences**

Available online at www.crpsonline.com



ISSN: 2250 - 2688

Received: 27/02/2022 Revised: 12/03/2022 Accepted: 27/03/2022 Published: 06/04/2022

Pranav Vyas, Vivek Singh Thakur, Deepak Basedia, Balkrishna Dubey Technocrats Institute of Technology-Pharmacy, Bhopal

#### Correspondence

#### Pranav Vyas

Technocrats Institute of Technology-Pharmacy, Bhopal

Email: Vy a spranav 121@gmail.com

DOI: 10.24092/CRPS.2022.120110

Website: www.crpsonline.com

Quick Response Code:



Development and Validation of RP-HPLC based Analytical method for Simultaneous Estimation of Montelukast and Bilastine in Tablet Dosage Form

Pranav Vyas, Vivek Singh Thakur, Deepak Basedia, Balkrishna Dubey

#### ABSTRACT

A new RP-HPLC method was developed for the estimation of bilastine and montelukast in tablets and it was validated as per ICH guidelines. The chromatogram for was found to be satisfactory on symmetry C-18 (4.6×150mm, 5 $\mu$  Thermosil column) using phosphate buffer (pH 4.5) and acetonitrile in the ratio of 30:70 v/v at a flow rate of 0.8 ml/min. The retention time of montelukast and bilastine were found to be 7.03 min and 9.50 min respectively. The system suitability parameters proved that the proposed method is suitable for simultaneous estimation of bilastine and montelukast. Tailing factor for the peak was found to be 1.003 and 1.258 for montelukast and bilastine respectively and the theoretical plates for separation were found to be 3409 and 7365 respectively montelukast and bilastine. The method was found to be linear in the range of 10-50 $\mu$ g/ml for both the drugs. The precision of the method was good and the recovery of drugs is well within the acceptance limits of 80-120%. The LOD was found to be 0.003  $\mu$ g/ml for montelukast and 0.09  $\mu$ g/ml for bilastine while the LOQ ws found to be 0.012  $\mu$ g/ml for montelukast and 0.3  $\mu$ g/ml for bilastine.

**Key words**: Montelukast, Bilastine, RP-HPLC, simultaneous estimation, validation, analytical method

## 1. INTRODUCTION

Bilastine (figure 1) is a novel new-generation antihistamine that is highly selective for the  $H_1$  histamine receptor, has a rapid onset and prolonged duration of action. It has a chemical formula of  $C_{28}H_{37}N_3O_3$ . Montelukast (figure 2) is a member of the leukotriene receptor antagonist (LTRA) category of drugs with molecular formula  $C_{35}H_{36}ClNO_3S$  and is indicated for the prophylaxis and chronic treatment of asthma.  $^2$ 

Several methods for individually estimating of bilastine and montelukast have been reported over years by several researchers.<sup>3-9</sup> The fixed combination of bilastine and montelukast has been approved very recently for the treatment of allergic rhinitis in adults. Hence, no method related to the estimation of this combination has been reported till date.

The objective was the present work was to develop a simple high performance liquid chromatography (HPLC) method for simultaneous estimation of bilastine and montelukast in tablets and validate the method as per ICH guidelines.

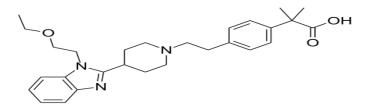



Figure 1. Chemical structure of bilastine

Figure 2. Chemical structure of montelukast

#### 2. MATERIALS AND METHODS

Bilastine and montelukast pure drugs were purchased from Yarrow Pharmaceuticals, Mumbai. All solvents used were of HPLC grade while the other reagents were of analytical grade. HPLC (Shimadzu, LC-10), electronic balance (Wensar), pH meter (Labtronics, LT-53), sonicator (Biotechnics) and double beam UV Visible spectrophotometer (Labtronics, LT-2201) were used in the study.

## 2.1 Determination of Solubility

The qualitative solubility of bilastine and montelukast was observed by dissolving a very small quantity of the individual drug in 1 mL of different solvents (water, methanol, acetonitrile).

## 2.2 Determination of Working Wavelength<sup>10</sup>

Individual solution of  $100~\mu g/mL$  of bilastine and monelukast was prepared in acetonitrile and scanned using a double beam UV-Visible spectrophotometer from 190 to 400 nm. The overlay spectra was obtained using software and the isosbestic point (point at which both the spectra meet and have same absorbance) was selected as the working wavelength for the simultaneous estimation.

# 2.3 Instrument Used For Method Development

Shimadzu binary HPLC system (LC-10) equipped with

Rheodyne injector (20  $\mu$ L loop), SPD 10 UV detector, hypersil C18 column (4.6 x 150 mm) with 5  $\mu$  particle size and Surwit N 2000 data acquisition software was used for the development and validation of the method.

## 2.4 Preparation of Phosphate Buffer Solution, 0.025 M Standard<sup>11</sup>

Accurately weighed 3.40 g of potassium dihydrogen phosphate and 3.55 g of anhydrous disodium hydrogen phosphate, both previously dried at 110° to 130° for 2 hours, were dissolved in sufficient HPLC water to produce 1000 ml.

## 2.5 Preparation of Standard Solution

A mixed standard stock solution of bilastine and montelukast was prepared by dissolving 20 mg and 10 mg respectively of bilastine and montelukast in 10 mL methanol. 2.0 mL of this stock solution was withdrawn and diluted with methanol (8 mL) to obtain a solution containing 400  $\mu g/mL$  and 200  $\mu g/mL$  of bilastine and montelukast. 1.0 mL of the above solution was further diluted with methanol to produce working standard solution containing bilastine (40  $\mu g/mL$ ) and montelukast (20  $\mu g/mL$ ). The solution was sonicated for 10 min and filtered through 0.45  $\mu$  membrane filter before use.

## 2.6 Tablet Sample For Analysis

Ten tablets were weighed to determine the average weight. The tablets were crushed and finely powdered in a mortar using pestle. Tablet powder equivalent to 20 mg bilastine and 10 mg montelukast was accurately weighed and transferred to volumetric flask and dissolved in 10 mL methanol by sonication for 30 min. The solution was filtered through Watman filter paper and 2.0 mL of this solution was diluted suitably to obtain concentration of bilastine (40  $\mu g/mL)$  and montelukast (20  $\mu g/mL)$ . The solution was sonicated for 10 min and filtered through 0.45  $\mu$  membrane filter syringe filter before use.

# 2.7 Optimized Conditions

Mobile phase consisted of phosphate buffer (pH 4.5) and acetonitrile in the ratio of 30.70~v/v and chromatographic conditions include:

Column: Octadecylsilane (ODS) (4.6 x 150mm, 5µm, Thermosil)

Flow rate: 0.8 ml per min Wavelength: 225 nm Injection volume: 20  $\mu$ l Run time: 15 min

#### 2.8 Validation of Method<sup>12</sup>

The method was validated according to ICH Q2B guidelines for accuracy, precision, linearity, limit of detection, limit of quantification and robustness.

## 2.9 System Suitability

Standard solutions were prepared as per the test method and injected into the chromatographic system. The system suitability parameters like theoretical plates, resolution and asymmetric factor were evaluated.

## 2.10 Specificity

Solutions of standard and samples were prepared as per test procedure and injected into the HPLC system. The chromatograms were recorded. A study to establish the interference of blank was conducted by injected the mobile phase into HPLC system.

## 2.11 Linearity

The working standards were prepared at different concentrations by diluting with the diluents. The dilutions were injected in to the HPLC system and analyzed as per the optimized conditions.

## 2.12 Accuracy

Accuracy of the method was determined by recovery studies. To check the accuracy of the method, recovery studies were carried out by addition of standard drug solution to pre-analyzed sample solution at three different levels (50%, 100%, 150%) of the target assay concentration. The amounts added, amounts estimated and the individual recovery and mean recovery values were calculated

#### 2.13 Precision

## 2.13.1 Repeatability

The working standard solution was injected in six replicates in the HPLC system and the peak area was measured. The % RSD for the area was calculated.

## 2.13.2 Intermediate Precision/Ruggedness:

To evaluate the intermediate precision (also known as Ruggedness) of the method, precision was evaluated on different days by different analysts.

## 2.14 Limit of Detection And Quantification

#### 2.14.1 Montelukast

 $A~0.003\mu g/ml$  solution was injected to the HPLC system and the LOD was calculated using the signal to noise ratio. For determination of LOQ  $0.012\mu g/ml$  solution was used.

#### 2.14.2 Bilastine

A  $0.09\mu g/ml$  solution was injected to the HPLC system and the LOD was calculated using the signal to noise ratio. For determination of LOQ  $0.3\mu g/ml$  solution was used.

#### 2.15 Robustness

The robustness of the proposed method was determined by analysis of aliquots from homogenous batches by differing physical parameters like flow rate and mobile phase composition which may differ but the responses would be still within the specified limits of the assay.

#### 3. RESULTS AND DISCUSSION

The solubility analysis was done qualitatively and it was found that bilastine was soluble in water, methanol and acetonitrile whereas montelukast was insoluble in acetonitrile. The overlay spectrum of monelukast and bilastine was obtained using the software attached to the UV spectrophotometer and the isosbestic point (225 nm) was selected as the working wavelength for the simultaneous estimation of both the drugs. The chromatogram was obtained using the optimized conditions (figure 3-5).

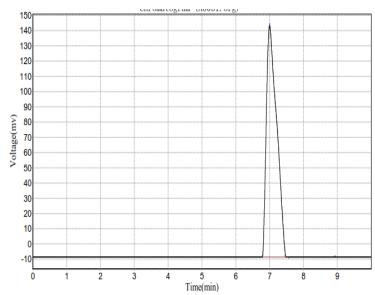



Figure 1. Chromatogram of Montelukast

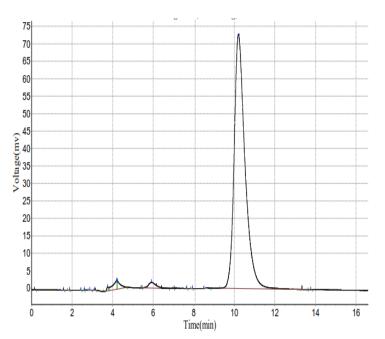



Figure 2. Chromatogram of Bilastine

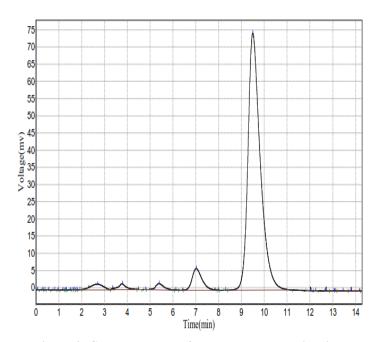



Figure 3. Chromatogram of Montelukast and bilastine combination

## 3.1 Validation of The Method

# 3.1.1 System Suitability

The % RSD of retention time was less than 2% and tailing factor and number of theoretical plates were found to be satisfactorily within the limits for both montelukast and bilastine

(table 1). Hence the selected system parameters were found to be suitable for the simultaneous estimation.

Table 1. System suitability parameters

| System<br>suitability<br>parameters | Bilastine | RSD   | Montelukast | RSD   |
|-------------------------------------|-----------|-------|-------------|-------|
| Retention<br>Time                   | 9.50      | 0.008 | 7.032       | 0.016 |
| Tailing Factor                      | 1.28      |       | 0.99        |       |
| No.of<br>Theoretical<br>plates      | 7365.33   |       | 3460        |       |

## 3.1.2 Linearity

The linearity range was found to be from 10 to 50  $\mu g/mL$  for both the drugs (Table 2).

**Table 2. Linearity** 

| Concentration<br>(µg/ml)       | AUC<br>(Bilastine) | AUC (Montelukast) |
|--------------------------------|--------------------|-------------------|
| 10                             | 4240.1             | 2613.86           |
| 20                             | 8463.98            | 5240.14           |
| 30                             | 12502.1            | 7841.49           |
| 40                             | 16760.9            | 10155.4           |
| 50                             | 21111.2            | 12936             |
| Correl Coeff (r <sup>2</sup> ) | 0.999              | 0.999             |
| Slope (m)                      | 420.3              | 255.6             |
| Intercept (c)                  | 3.917              | 89.51             |

## 3.1.3 Accuracy

Accuracy of the method was determined by Recovery studies. To the formulation (pre-analysed sample), the reference standards of the drugs were added at the level of 50%, 100%, 150%. The spiked sample was recovered within a range of 98-102% justifying the accuracy of method in estimating the concentration of the drugs of mixture (Table 3).

Table 3. Accuracy

| Conc. of monteluk ast in tablet sample | Conc. of montel ukast added to final (□g/ml) | % Recove red (mean) | Conc. of bilastin e in tablet sample □g/ml) | Conc. of bilasti ne added to final (□g/m l) | % Recover ed (mean) |
|----------------------------------------|----------------------------------------------|---------------------|---------------------------------------------|---------------------------------------------|---------------------|
| 20                                     | 10                                           | 100.31<br>7         | 40                                          | 20                                          | 99.408              |
| 20                                     | 20                                           | 98.665              | 40                                          | 40                                          | 100.083             |
| 20                                     | 30                                           | 99.048              | 40                                          | 60                                          | 99.941              |

#### 3.1.4 Precision

The precision of the method depicts its ability to reproduce the results irrespective of the day of analysis, the analyst or even the instrument used for analysis. The results of repeatability and intermediate precision are reported in table 4 and table 5 respectively.

Table 4. Repeatability of the developed method

| Concentrat<br>ion<br>(□g/ml) | Montelukast (20<br>μg/mL) |          | Bilastine 40 (µg/mL) |               |
|------------------------------|---------------------------|----------|----------------------|---------------|
|                              | Retentio                  | Peak     | Retentio             | Peak          |
|                              | n time                    | Area     | n time               | Area          |
| Mean (n =6)                  | 7.030                     | 5241.667 | 9.560                | 16889.16<br>7 |
| SD                           | 0.044657                  | 33.67887 | 0.157304             | 240.2943      |
|                              | 213                       | 567      | 058                  | 334           |
| %RSD                         | 0.635267                  | 0.642522 | 1.645468             | 1.422771      |
|                              | 859                       | 27       | 624                  | 994           |

#### 3.1.5 Robustness

The deliberate changes in flow rate and mobile phase composition were made in order to study the effect of the same on the results obtained by the method. The method was able to adjust to the changes with no significant change in the retention time of the eluted components.

**Table 5. Intermediate precision** 

| Concentrat ion (□g/ml) |           | nkast (20<br>mL) | Bilastine 40 (μg/mL) |           |  |
|------------------------|-----------|------------------|----------------------|-----------|--|
| ion (g/mi)             | Retention | Peak             | Retention            | Peak      |  |
|                        | time      | Area             | time                 | Area      |  |
| Mean (n =6)            | 7.002     | 5243.167         | 9.579                | 17069.167 |  |
| SD                     | 0.0535602 | 35.991202        | 0.0500176            | 135.50116 |  |
|                        | 46        | 63               | 64                   | 85        |  |
| %RSD                   | 0.7649824 | 0.6864401        | 0.5221504            | 0.7938358 |  |
|                        | 53        | 79               | 68                   | 75        |  |

The results reveal that the % RSD in both the repeatability and intermediate precision studies was less than 2%, thereby ascertaining that the developed method will produced consistent results.

## 3.1.6 Limit of Detection (LOD) and Limit of Quantification (LOQ)

The LOD and LOQ were calculated using the signal to noise ratio method. The average base line noise obtained from the blank run (mobile phase injection) was found to be 54  $\mu V$  whereas the signal obtained from LOD solution (0.25% of target assay concentration for montelukast and 0.3% assay concentration for bilastine) was found to be 152 and 155  $\mu V$  respectively.

S/N = 152/54 = 2.81 (for montelukast) S/N = 155/54 = 2.87 (for bilastine)

The S/N Ratio value shall be 3 for LOD solution.

The signal obtained from the LOQ solution (1.0% of target assay concentration) was found to be 571  $\mu V$ .

S/N = 521/54 = 9.64 (for montelukast) S/N = 524/54 = 9.70 (for bilastine)

The S/N Ratio value shall be 10 for LOQ solution.

# 3.2 Application of The Method To Marketed Formulation

The developed and validated method was applied for the analysis of the marketed formulation of bilastine and montelukast and the results obtained are presented in table 6. The percentage assay of montelukast and bilastine were found to be 100.3 % and 99.45 % respectively

Table 6. Results of assay of marketed formulation

| Brand name &        | Amount found (mg)* |           | Percentage recovery |           |
|---------------------|--------------------|-----------|---------------------|-----------|
| label<br>content    | Montelukast        | Bilastine | Montelukast         | Bilastine |
| Bilafav<br>M tablet | 10.03              | 19.89     | 100.3               | 99.45     |

<sup>\*</sup> Average of three replicate values

## 4. CONCLUSION

The investigation resulted in the development of a new RP – HPLC method for the simultaneous estimation of bilastine and montelukast in tablet formulations. The method is simple, selective, reproducible and accurate with good precision and can be used for routine pharmaceutical analysis. The method could be easily used with accurate results for routine estimation of the above combination in dosage forms.

## 5. REFERENCES

- 1. <a href="https://go.drugbank.com/drugs/DB11591">https://go.drugbank.com/drugs/DB11591</a> assessed on 19/02/2022.
- 2. <a href="https://go.drugbank.com/drugs/DB00471">https://go.drugbank.com/drugs/DB00471</a> assessed on 19/02/2022.
- Chandra U, Kumar M, Sharma S, Gupta P, Garg A. Development and Validation of Reverse Phase High Performance Liquid Chromatography Method for In-vitro Dissolution Testing of Bilastine and Montelukast Sodium Tablets. International Journal of Pharmaceutical Sciences and Drug Research. 2021; 13(3): 281-287
- Padhiyar V, Patani P, Tiwari N. Development and validation of stability indicating rp-hplc method for simultaneous estimation of montelukast sodium and bilastine from its pharmaceutical dosage form. Journal of Emerging Technologies and Innovative Research. 2021; 8(6): b865-b877
- Prathyusha P, Sundararajan R, Bhanu P, Annapurna M,
   Mukthinuthalapati. A new stability indicating RP-HPLC method for determination of Bilastine in bulk and pharmaceutical formulation.
   Research Journal of Pharmacy and Technology 2020; 13(6): 2849-2853.
- Peethala Prathyusha, Raja Sundararajan. UV spectrophotometric method for determination of Bilastine in bulk and pharmaceutical formulation. Research J. Pharm. and Tech 2020; 13(2):933-938.

- Rana NS, Rajesh KS, Patel NN, Patel PR, Limbachiya U, Pasha TY.
   Development and Validation of RP-HPLC Method for the Simultaneous Estimation of Montelukast Sodium and Ebastine in Tablet Dosage Form.
   Indian J Pharma Sci 2013; 75(5): 599-602
- Singh RM, Saini PK, Mathur SC, Singh GN, Lal B. Development and validation of a RP-HPLC method for estimation of montelukast sodium in bulk and in tablet dosage form. Indian J Pharm Sci 2010; 72(2): 235-237
- Rathore AS, Sathiyanarayanan L, Mahadik KR. Development of Validated HPLC and HPTLC Methods for Simultaneous Determination of Levocetirizine Dihydrochloride and Montelukast Sodium in Bulk Drug and Pharmaceutical Dosage Form. Pharmaceutical Analytica Acta 2010; 1(1): 106. doi:10.4172/2153-2435.1000106
- Biswas P, Jain P, Parkhe G, Mishra B. Validated HPLC method for the estimation of Aspirin and Omeprazole in dosage form. J Pharmacol Biomed 2018; 2(3): 171-180.
- 11. Indian Pharmacopoeia, Vol. 1, 2007, pp 244
- Patel A, Soni P, Yadav N, Omray LK. New cost effective RP-HPLC method development and evaluation for quantitative estimation of Pitavastatin in pharmaceutical formulation. J Pharmacol Biomed 2018; 2(3): 181-188