

Current Research in Pharmaceutical Sciences

Available online at www.crpsonline.com

ISSN: 2250 - 2688

Received: 19/12/2021 Revised: 28/12/2021 Accepted: 31/12/2021 Published: 08/01/2022

Vishnu P. Tripathi

Department of Biotechnology, V.B.S. Purvanchal University, Jaunpur, India

M K Aneebuddin

Department of Pharmaceutics, Shadan College of Pharmacy, Hyderabad, Telangana, India

C. Alex

Department of Immunology, National University of Singapore, Singapore

Keshav S Moharir

Department of Pharmaceutics, Gurunanak College of Pharmacy, Nagpur, Maharashtra, India

Correspondence

Vishnu P. Tripathi

Department of Biotechnology, V.B.S. Purvanchal University, Jaunpur, U.P.- India

Email: tripatipvishnu@gmail.com

DOI: 10.24092/CRPS.2021.110403

Website: www.crpsonline.com

Quick Response Code:

Evaluating Clinical Applications of Liquid Biopsy by Combining Circulating Tumor DNA and Tumor cells

Vishnu P. Tripathi, M K Aneebuddin, C. Alex, Keshav S. Moharir

ABSTRACT

"Liquid biopsy" concentrates on the identification of 'Circulating Tumor Cells (CTC) as well as 'Cell-free Tumor DNA' (ctDNA) in the systemic circulation of individuals suffering from cancer, has received a lot of interest due to its evident clinical implications for individualized therapy. CTC and ctDNA studies have created fresh diagnostic approaches and are now the foundations of liquid biopsy. The existing study concentrates on cancer diagnoses, prognosis prediction in people having treatable diseases, observing systemic therapy, and patient categorization depending on the identification of aimed therapeutics or resistance mechanisms. Although the use of CTCs and ctDNA for initial cancer diagnosis is gaining popularity, existing techniques experience major challenges in terms of particularity and sensitivity. Prognosis projection in people with the treatable disease so far realized in some cancer entities, especially in breast cancer. Sequential assessments of CTCs or ctDNA can also be used to monitor the progress or non-success of systemic medicines (such as hormone and chemotherapy as well as various targeted therapies). To integrate liquid diagnostic tests into personalized medicine, interventional studies on therapy stratification based on CTC and ctDNA analyses are required.

Key words: Tumor cells, DNA, Circulating cells, Chemotherapy, Liquid biopsy.

1. INTRODUCTION

Initially, in the development and progression of an original tumor, cells are released into the systemic circulation (e.g., prostate, colorectal, breast, or lung cancer). Different methods that take advantage of their physical and biological characteristics can be used to enrich and detect these circulating tumor cells (CTC). For cancer patients, CTC studies are referred to as present time "liquid biopsy". 1 CTC study is an immensely moving field, with more than 17,000 publications in PubMed until December 2015. The "liquid biopsy" was recently used to describe the examination of circulating cell-free tumor DNA (ctDNA) discharged through necrotic or apoptotic cancer cells. 2 Researchers have been able to examine ctDNA within blood plasma for cancer-specific abnormalities thanks to the development of sophisticated molecular tests; as a result, CTC and ctDNA techniques had grown into competitive biological markers. 3 As a result, we believe that the knowledge gained from CTCs and ctDNA is distinct, flattering, and based on circumstance use. 4 The current study focused on the clinical approaches of ctDNA and CTCs in cancer patients as a liquid biopsy after a brief explanation of the biology and detection methods. Tumor cells are discharged into the systemic circulation by the original tumor and metastatic locations. CTCs have a short half-life in the systemic circulation (which is 1 to 4 hours). ⁵

It's still a subject of debate in case of the CTC discharge into the systemic circulation is an arbitrary procedure or preordained by a particular biological program. Nonetheless, epithelial tumor cells face tough circumstances in the circulation, and CTCs are likely to experience a tough selecting procedure. 6 These are congruous by the surveillance that programmed cell death CTCs or segmented CTCs are repeatedly seen within the peripheral blood of malignancy patients. ⁷ The authorization of existing CTCs occurs via eructation towards secondary organs. For instance, a relative examination of CTCs in the peripheral and mesenteric veins in patients with colorectal cancer revealed that the liver apprehends tumor cells discharged from the original malignancy, that also constant with the affluence of animal information on the topic. Since the spreading of cancer cells to distant metastasis sites requires a faithless excursion via vasculature, which is promoted by close interrelation with activated macrophages and platelets. 8,9 As a result, tumor cells form heteroaggregates that assist in endothelial adhesion and hence contribute to metastasis. 10 Furthermore, the migration of metastatic cells in the bloodstream is frequently reliant on chemokine gradients, such as CCR9, CCR7, CCR4, and CXCR4, which guide cancer cells along the vasculature. 12 The CTC identification in patients after some time (months or years) after initial tumor removal suggests that cancer cells can circulate again into the systemic circulation from secondary metastatic locations. 5-12 It is uncertain in what way these CTCs subscribe to metastatic dissemination and development. Preceding research outcome in a mice model indicates that cancer cells could be returning to the originating location, this procedure is known as 'Tumor self-seeding. 13 From the finest information of ours, studies found no clear evidence of this occurring in cancer patients; even so, it is fascinating to record the identification of disseminated tumor cells (DTC) in the bone marrow of breast cancer patients is interconnected not only to metastatic recurrence but also to locoregional recurrence with potentially extra aggressive metastatic variants. 14 More information may be gained from upcoming genetic investigations of DTCs and CTCs as well as metastatic and primary lesions of the same patients.

2. ESSENTIAL IN ctDNA DETECTION

2.1 CTCs

The development of numerous technologies to enrich and identify CTCs has progressed recently, along with the identification and documentation of novel CTC markers. ¹⁵ It is crucial to emphasize that the CTC research concentrated on the biology of tumor propagation, in certain on EMT influencing tumor cells with possible stem cell-like features. ¹⁶ As a result, various groups have established novel technologies to choose and recognize CTCs that have undergone EMT. ¹⁷ CTC tests often begin with an enrichment phase, which boosts the focus

of CTCs through many log units and makes single tumor cells easier to detect. ¹⁸ CTC can then be detected in a variety of methods. In theory, CTCs can be enriched favorably or pessimistic based on biologic qualities (e.g., expression of protein markers) or based on physical properties (i.e., deformability, density, size, or electric charges). A combination of physical and biological features in the same device can also be used to generate positive or negative CTC enrichment. Immunologic, molecular, and functional tests can then be used to identify CTCs. ¹⁹ Many research groups previously concentrated on functional assessments employing CTC cultures/cell lines and xenografts. ²⁰ Drug susceptibility may be tested using these *in vitro* and *in vivo* models.

2.2 ctDNA

Extremely sensitive and particular techniques for detecting ctDNA, such as TamSeq, BEAMing Safe-SeqS, and digital PCR to identify single-nucleotide mutations in ctDNA or whole-genome sequencing to determine copy-number modifications, have been developed. In general, innovations could be separated into aimed perspectives that target to recognize mutations in a preconceived arrangement of genes (for example, KRAS in the context of EGFR inhibited by antibodies) and untargeted strategies that intend to screen the genome and discover fresh genomic abnormalities, such as those which confer resistance to a particular target therapy. ²¹ The limitations and strengths of certain technologies have lately been discussed. ²² Despite concerted attempts to raise detection limits, targeted techniques show higher analytic sensitivity than untargeted procedures. ²³ Recently, ultrasensitive technologies have emerged that can identify the tiniest quantities of ctDNA in the 'sea' of typical cfDNA, which is necessary for the initial identification of tumor or insignificant residual illness. ²⁴

3. SCREENING AND EARLY DETECTION OF CANCER

In most cancer screening studies, patients with cancer are compared to healthy controls (healthy individuals or patients with benign diseases). Cohort studies are inconvenient because they require large research groups and long follow-up periods. To expedite the validation process, focusing on individuals with a greater possibility of growing tumors [for example, COPD patients are a good approach].

3.1 CTCs

According to Ilie and colleagues, CTCs might be observed in individuals with COPD who did not have clinically evident lung cancer. ²⁵ In this research, there were 168 patients with COPD (68.6%) and 77 persons without COPD (31.4%) in the trial, including 42 control smokers and 35 nonsmoking healthy people. Low-dose spiral CT was used to monitor COPD patients once a

year. CTCs were discovered in 3% of COPD patients (5 of 168 patients). The yearly CT-scan screening of CTC-positive COPD patients found lung nodules 1 to 4 years after CTC diagnosis, resulting in rapid surgical resection and histopathologic diagnosis of initial-stage lung cancer, although no CTCs were found in the controlled smoking and nonsmoking healthy persons. Curiously, CTCs found in COPD patients displayed a heterogeneous expression of epithelial and mesenchymal markers. These early findings must be validated in larger cohorts, and the source which might lead to unspecific observations in non-cancer patients, such as the discharge of epithelial cells into the systemic circulation of patients with inflammatory bowel diseases, ²⁶ must be discovered.

3.2 ctDNA

The diagnosis of cancer by monitoring ctDNA has gotten a lot of attention. ^{27,28} The most challenging technical problem is detecting extremely small levels of ctDNA in blood samples with varying amounts of cfDNA, as well as selecting the appropriate panel of cancer-specific genetic abnormalities. The Johns Hopkins researchers recently evaluated the potential of ctDNA to detect tumors in 640 individuals with diverse cancer types using digital polymerase chain reaction-based technologies.²⁹ The ctDNA was detected in Only 48 percent to 73 percent of individuals with such breast localized cancers, as adenocarcinoma, gastroesophageal cancer, colorectal cancer, and pancreatic cancer. Even though, these identification values are insufficient for initial cancer diagnosis. The ctDNA was often found in individuals who did not have recognizable CTCs. 30 CTCs, on the other hand, had not improved, but rather resolved in platelets with a large influence of leukocytes, a method with a low sensitivity that is rarely utilized in current CTC diagnoses. Many teams are competing for much more sensitive ctDNA technologies at present. For instance, the group of Maximilian Diehn's has created a novel method known personalized profiling "cancer deep sequencing"(CAPP-Seq). 31-34 CAPP-Seq was carried out for nonsmall cell lung cancer (NSCLC) using a design that covered many classes of somatic changes and found mutations in >95 percent of tumors with 96 percent accuracy for mutant allele fractions as low to around 0.02 percent. Although ctDNA was found in most of the patients with stage II-IV cancer, hardly 50% of individuals with stage I NSCLC was diagnosed. The amount of ctDNA in the cfDNA fraction was found to be roughly 10-fold lower in patients with stage I malignancies than in patients with more advanced disease. This variation is not unexpected and it could be seen in other tumor types as well. Thus, furthermore, technological advancements, such as the capacity to analyze greater blood volumes, are necessary to achieve acceptable sensitivity for initial cancer diagnosis. 35-40

The CTC and ctDNA analyses have built the latest diagnostic routes and are currently the pillars of liquid biopsy diagnostics. In the future, to what extent may they replace tumor biopsies is a subject that remains conjecture. A liquid biopsy might provide an alternative for the primary diagnosis of malignancies that are difficult to biopsy, such as lung cancer, as well as restaging/molecular analysis of metastatic lesions. Furthermore, liquid biopsy diagnostics may aid in focusing the existing cancer screening techniques on individuals at higher risk, which would be reducing health consequences (for example radiation in mammography) and healthcare expenditures. Despite few promising initial results and tremendous interest from the public press and diagnostic organizations (cancer diagnosis with a drop of blood), initial cancer detection confronts major sensitivity and specificity challenges. On the other hand observing, ctDNA as well as CTCs throughout systemic therapy in patients with cancer, is an approach that may be easy to accomplish and bring closer to clinical practice. Several studies have shown that CTCs for analyzing ctDNA and mutations conferring responsiveness or resistance to targeted therapy is conceivable in cancer patients with the final stage. Various testing for mutations in genes encoding therapeutic targets and the equivalent resistance genes will be conducted in the upcoming future. NSCLC, in particular, is a fascinating tumor category for this application since many mutations leading to specific targeted therapy in small cohorts of responding individuals have recently been revealed, and biopsies are difficult to obtain in a significant number of patients.

REFERENCES

- Pantel K, Alix-Panabieres C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 2010; 16: 398 – 406.
- Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor
 DNA . J Clin Oncol 2014; 32: 579 86.
- Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov 2014; 4: 650 –
- Pantel K, Alix-Panabieres C. Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res 2013; 73: 6384 – 8.
- Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 2013; 3: 1020 – 9.

4. CONCLUSION

- Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, et al.
 Circulating tumor cells in patients with breast cancer dormancy. Clin
 Cancer Res 2004; 10: 8152 62.
- Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 2013; 23: 573 – 81.
- Larson CJ, Moreno JG, Pienta KJ, Gross S, Repollet M, O'Hara S M, et al. Apoptosis of circulating tumor cells in prostate cancer patients.
 Cytometry A 2004; 62: 46 53.
- Douillard JY, Ostoros G, Cobo M, Ciuleanu T, McCormack R, Webster
 A, et al. First-line gefi tinib in Caucasian EGFR mutationpositive
 NSCLC patients: a phase-IV, open-label, single-arm study. Br J Cancer
 2014; 110: 55 62.
- 10. Deneve E , Riethdorf S , Ramos J , Nocca D , Coffy A , Daures JP , et al. Capture of viable circulating tumor cells in the liver of colorectal cancer patients . Clin Chem 2013; 59: 1384-92.
- 11. Smith HA , Kang Y. The metastasis-promoting roles of tumor associated immune cells. J Mol Med (Berl) 2013; 91: 411 29.
- Gay LJ, Felding-Habermann B . Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11: 123 – 34.
- Bonecchi R , Galliera E , Borroni EM, Corsi MM, Locati M , Mantovani
 A. Chemokines and chemokine receptors: an overview . Front Biosci (Landmark Ed) 2009; 14: 540–51.
- 14. Melo SA, Luecke LB , Kahlert C , Fernandez AF , Gammon ST, Kaye J, et al. Glypican-1 identifi es cancer exosomes and detects early pancreatic cancer . Nature 2015; 523: 177-82.
- 15. Muller V , Stahmann N , Riethdorf S , Rau T , Zabel T , Goetz A , et al. Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity . Clin Cancer Res 2005; 11: 3678 – 85.
- 16. Kim MY , Oskarsson T , Acharyya S , Nguyen DX , Zhang XH , Norton L , et al. Tumor self-seeding by circulating cancer cells. Cell 2009; 139 : 1315-26.
- 17. Bidard FC , Peeters DJ , Fehm T , Nole F , Gisbert-Criado R , Mavroudis D, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data . Lancet Oncol 2014; 15: 406-14.

- Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, et al. A pooled analysis of bone marrow micrometastasis in breast cancer.
 N Engl J Med 2005; 353: 793 802.
- Alix-Panabieres C , Pantel K . Challenges in circulating tumour cell research . Nat Rev Cancer 2014; 14: 623 – 31.
- 20. Mani SA , Guo W , Liao MJ , Eaton EN , Ayyanan A , Zhou AY , et al. The epithelial–mesenchymal transition generates cells with properties of stem cells . Cell 2008; 133: 704-15.
- Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 2013; 19: 1438 – 49.
- 22. Antonarakis ES , Lu C , Wang H , Luber B , Nakazawa M , Roeser J C, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer . N Engl J Med 2014; 371: 1028 38.
- 23. Cayrefourcq L , Mazard T , Joosse S , Solassol J , Ramos J , Assenat E , et al. Establishment and characterization of a cell line from human circulating colon cancer cells . Cancer Res 2015; 75: 892-901.
- 24. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013; 31: 539 44.
- 25. Steinestel J, Luedeke M, Arndt A, Schnoeller TJ, Lennerz JK, W urm C, et al. Detecting predictive androgen receptor modifications in circulating prostate cancer cell. Oncotarget 2015 Apr 23. Epub ahead of print
- 26. Kahlert C , Melo SA , Protopopov A , Tang J , Seth S , Koch M , et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 2014; 289: 3869-75.
- 27. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 2014; 24: 766 9.
- 28. Heitzer E , Auer M , Hoffmann EM , Pichler M , Gasch C , Ulz P , et al. Establishment of tumor-specifi c copy number alterations from plasma DNA of patients with cancer . Int J Cancer 2013; 133: 346-56.
- Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 1999; 64: 218 – 24.

- 30. Elshimali YI , Khaddour H , Sarkissyan M , Wu Y , Vadgama JV . The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients . Int J Mol Sci 2013; 14: 18925-58.
- 31. Kirsch C , Weickmann S , Schmidt B , Fleischhacker M . An improved method for the isolation of free-circulating plasma DNA and cell-free DNA from other body fl uids . Ann N Y Acad Sci 2008; 1137: 135 -9.
- Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11: 426–37.
- 33. Trejo-Becerril C , Perez-Cardenas E , Taja-Chayeb L, Anker P , Herrera-Goepfert R , Medina-Velazquez LA , et al. Cancer progression mediated by horizontal gene transfer in an in vivo model . PLoS One 2012; 7: e52754.
- 34. Satelli A, Brownlee Z, Mitra A, Meng QH, Li S. Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule-and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin Chem 2015; 61: 259 66.
- 35. De Lamirande G. Action of deoxyribonuclease and ribonuclease on the growth of Ehrlich ascites carcinoma in mice. Nature 1961; 192: 52-4.
- Pantel K , Alix-Panabieres C . Functional Studies on Viable Circulating
 Tumor Cells . Clin Chem 2016; 62: 328 34 .
- 37. Alix-Panabieres C, Pantel K . Liquid biopsy in cancer patients: advances in capturing viable CTCs for functional studies using the EPISPOT assay . Expert review of molecular diagnostics 2015; 15: 1411-7.
- 38. Heidary M , Auer M , Ulz P , Heitzer E , Petru E , Gasch C , et al. The dynamic range of circulating tumor DNA in metastatic breast cancer . Breast Cancer Res 2014; 16: 421.
- Pantel K, Speicher MR. The biology of circulating tumor cells.
 Oncogene. 2015.
- 40. Murtaza M , Dawson SJ , Tsui DW , Gale D , Forshew T , Piskorz AM , et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013; 497: 108–12.