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2D and 3D QSAR Analysis of Imidazole Derivatives as Heme 

Oxygenase Inhibitor  
 

Darshana Gohate and Parul Mehta   

ABSTRACT 

Selective inhibition of heme oxygenase is an important strategy in design of potent 
inhibitors of enzyme for the treatment of neonatal jaundice, cancer and many more. QSAR 
analysis is employed for a given set of compounds containing imidazole pharmacophore in 
order to establish a relationship between the biological activity and related descriptors, which 
provides us an idea to gain a potent inhibitor with lesser side effects. In this paper we present 
results of 2D and 3D QSAR studies of series of 26 molecules containing imidazole 
pharmacophore as selective heme oxygenase inhibitor using V Life MDS 3.5 Software. The 2D 

QSAR studies was performed using Partial Least Square Regression method and the 3D QSAR 
studies was performed using k- Nearest Neighbor Molecular Field Analysis(kNN- MFA) 
method. The analysis has produced good predictive and statistically significant QSAR models. 
2D QSAR studies produced good statistical model with r2 value 0.8487, cross validated r2 value 
0.6553 and prd_r2 value 0.7478 by PLSR method while 3D QSAR model gave statistical value 
of cross validated r2 value 0.5493 and pred_r2 value 0.3358. The results of the QSAR analysis 
suggested that the 2-D descriptor viz. physicochemical and alignment independent played an 
important role for heme oxygenase inhibition and the 3-D descriptors electrostatic and steric 

revealed the relative positions and range for substitution in a molecule. In 3D model, grid 
suggested that a positive electrostatic potential is favorable for increase in biological activity 
and the steric field with negative range and the negative range indicates that negative steric 
potential is favorable for increase in the activity. Thus, the descriptors generated by 2-D and 3-
D QSAR analysis were useful in designing of potent molecules. 
 

Key words: Heme Oxygenase Inhibitor; HO-1; 2D QSAR; 3D QSAR; kNN-MFA 

 

 1.   INTRODUCTION 

Heme Oxygenase (HO) (EC 1.14.99.3) catalyses the first and rate-limiting step in the  

oxidative  breakdown  of  heme  to  carbon  monoxide (CO),  biliverdin  (which is rapidly  reduced  

to  bilirubin),  and  ferrous  iron.1,2,3  Heme  Oxygenase  Inhibitor  is highligtened  in  case  of  

neonatal  jaundice, 4,5,6,7,8  intracerebral  hemorrhage,9,10,11 as  an anticancer  agent 12,13,14  and  

many  more.  Various Heme Oxygenase inhibitors are being made till date like 

metalloporphyrins15,16,17 and imidazole-dioxolane compounds 18,19,20.21. Our present focus is to 

make a potent inhibitor which is helpful to us in the neonatal jaundice which is a severe 

pathological condition exhibited in neonates, and can also lead to drastic condition of brain 

damage i.e.‘kernicterus’. Also, our main emphasis is to examine potential applications of 

pharmacologic inhibitors of HO activity as therapeutic agents in the context of disease processes 

associated with excessive activation of heme oxygenase system. So, there is a need to design and 

screen heme oxygenase inhibitors with higher bioactivities. There is a need to analyze the 

correlation between heme oxygenase inhibitor activity and physico-chemical parameters of each 

category of compounds using the Quantitative Structure Activity Relationship (QSAR) methods 

because the quantitative analysis of such molecules can be utilized for increasing the potency and 

minimizing the side effects.                        
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 Imidazole is an organic compound with the formula 

C3H4N2. This aromatic heterocyclic is classified as an alkaloid. 

Imidazole ring system is present in important biological building 

blocks such as histidine, and the related hormone histamine. It has 

a wide range of pharmacological activity like antifungal,22 

antimycobacterial,23antiprotozoal,24 analgesic,25 anticancer,26 

angiotensin antagonist,27 antidepressant,28 antihistaminic,29 

antihypertensive 30 and as heme oxygenase inhibitor.31,32,33,34,35 

Various researches are being going on imidazole-dioxolane 

compounds as heme oxygenase inhibitor, so QSAR analysis will 

help us to predict some newer potent molecule in order to study 

and establish a correlation between structure and biological activity 

of imidazole-dioxolane, as heme oxygenase inhibitors.  

 

2.   MATERIALS AND METHODS 

2.1   Data Set 

        The Heme Oxygenase Inhibition of imidazole-dioxolane, 

figure 1 has been reported by Vlahakis et al., 36 in terms of 

inhibitory concentration 50% of enzyme Heme Oxygenase-1 [HO-

1] (IC50  in micromoles). One of the compounds of the series has no 

well defined activity, so the QSAR study was performed on a set of 

25 molecules. The enzyme inhibition data were converted to 

negative logarithmic pIC50 to reduce skewness of dataset and then 

used for subsequent QSAR analysis as dependent variables.  The 

structures of all imidazole analogues with HO-1 inhibitory activity 

are presented in Table no-1. All computational studies were 

performed using V–Life Molecular Design Software Version 3.5.37 

The sketched structures were then exported to three dimensional 

structures (3D). The geometries of generated 3D structures were 

optimized using Merck Molecular Force Field (MMFF) fixing 

Root Mean Square Gradients (RMS) to 0.01 Kcal/mol Å as 

implemented in  the V-Life MDS 3.5. 

 

2.2  2D QSAR 

        The QSAR models were generated by using biological 

activity as dependent variable and descriptors as independent 

variables. The series of compounds were divided into test and 

training set for the generation of models. In present study, manual 

selection method is applied, using Partial Least Square [PLS], with 

forward- backward variable selection method. The program 

employs a stepwise technique, i.e., only one parameter at a time 

was added to a model and always in the order of most significant to 

least significant in terms of F-test values. Statistical parameters 

were calculated subsequently for each step in the process, so the 

significance of the added parameter could be verified. The 

goodness of the correlation is tested by the regression coefficient  

(r2), the cross-validated squared correlation co-efficient (q2), the  F-

test and the standard error of estimate (SEE). The correlation  

coefficient values closer to 1.0  represent the better fit of  the  

model. The F-test reflects the ratio of the variance explained by the 

model and the variance due to the error in the model (i.e.,the 

variance not explained by the  model). High values of the F-test 

indicate that the model is statistically significant. The predictive r2 

(r2pred) was calculated for evaluating the predictive capacity of the 

model. The value of predr2  0.5  indicates the good  predictive  

capacity of the QSAR  model. It has been observed that the values 

of statistical parameters  like  q2  0.5  and  prdr2  0.5  was not 

achieved in models generated, also from the fitness  plot of the 

generated model, 2 molecules were considered outliers, so it has 

been removed  from the data set and further the models were 

regenerated. After removal of outliers, a good statistical result was 

observed. 

 

2.3   3D QSAR 

         Molecular alignment utility allows alignment of two or more 

molecules in a dataset with respect to selected template or with 

respect to a particular set of atoms explicitly selected in every  

molecule of the data set. The resulting set of aligned molecules can 

then be used in the 3D-QSAR for building quantitative models to 

predict new molecules having the similar template or set of atoms. 

Molecular alignment is also used in visualizing the structural 

diversity in the given set of molecules. Template Based alignment 

method was used for the generation of model. Template Based 

Alignment feature performs alignment of set of molecules based on 

given template. A reference molecule is selected for defining 

coordinates to align rest of the molecules. The aligned molecules 

are automatically stored in the reference folder. Set of molecules 

lacking common template can also be aligned based on a set of 

atoms selected in same order in all the molecules of the set. In the 

present study imidazole template was considered (figure 2) and the 

alignment was observed (figure 3). 

 

Aligned molecules were used to calculate 3-D descriptor 

with biological activity as dependent variable. Before calculation 

of 3-D descriptors following values and parameters are to be fixed 

like field type as electrostatic, steric and hydrophobic. Charge type 

set as Gasteiger- Marsili, dielectric constant as 1.0 with distance 

dependent dielectric function. A sp3 carbon atom and  + 1.0 charge 

was served as the  probe atom to calculate steric and  electrostatic 

fields. The grid setting is given below (Table 2). 

 

The QSAR models were generated using k-nearest 

neighbor method (kNN) of V Life molecular design suite.38 The 

test set of 7 molecules and a training set of 16 molecules were  

subjected to 3D QSAR analysis. The kNN-MFA model provided 

direction for the design of new molecules in a rather convenient 

way. The kNN-MFA model show the grid which shows the point 

contributes stepwise kNN-MFA. The range of property values for 

the chosen points may aid in the design of new potent molecules. 

http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Aromatic
http://en.wikipedia.org/wiki/Heterocyclic
http://en.wikipedia.org/wiki/Alkaloid
http://en.wikipedia.org/wiki/Histidine
http://en.wikipedia.org/wiki/Histamine
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The range is based on the variation of the field values at the chosen 

points using the most active molecule and its nearest neighbor set. 

 
 

3.   RESULTS & DISCUSSION 

 
 

3.1  2D–QSAR studies 

 

QSAR analysis on a series of imidazole-dioxolane was 

performed by using V-Life software. The physiochemical 

descriptors and inhibitory activity was taken as independent and 

dependent variables respectively. Correlations were established 

between the biological activity and calculated molecular 

physiochemical descriptors through Partial Least Square  

regression (Stepwise forward-backward). The summary of model is 

given below: 

 

Equation: PIC50 = -1.2583 T_N_O_7 -0.0075 Mol.Wt. + 0.1232 

SsNH2E-index +  0.5912 T_O_F_5 + 3.0766 

 

 Statistics: n= 18; r2 = 0.8487, q2 = 0.6553, prd r2 = 0.7478, r 2se = 

0.2055, q2se = 0.3102, prd r2  se = 0.1988, F test = 42.0756. 

The statistics of the generated model explains 84.87% (r2 = 

0.8487) of the total variance in the training set as well as it has 

internal (q2) and external (prd_r2) predictive ability of 65% and 

74% respectively. The low standard error r2se = 0.2055, q2se = 

0.3102 and prdr2se= 0.1988 demonstrates accuracy of the model. 

The F test = 42.0756 shows the statistical significance of 99.99% 

of the model which means that probability of failure of the model 

is 1 in 10000. 

 The descriptors: mol. wt. signifies molecular weight of 

compounds, SsNH2E-index signifies Electro topological state 

indices for number of –NH2 group connected with one single bond, 

T_N_O_7 signifies the count of number of nitrogen atom separated 

from oxygen atom by 7 bonds in a molecule, T_O_F_5 signifies 

the count of number of oxygen  atom separated from fluorine atom 

by 5 bonds in a molecule. The developed PLSR model reveals that 

the descriptors T_N_O_7, Mol. Wt., SsNH2E-index and  T_O_F_5 

were highly correlated to biological activity (Figure 4).The 

descriptor T_N_O_7 (i.e. the count of number  of nitrogen atom 

separated from oxygen atom by 7 bonds in a molecule) plays most  

important role (-39.28%) and is inversely proportional to the 

biological activity. A negatively correlated descriptor Mol. Wt. (-

24.68%) shows that a decrease in it will lead to increase in activity. 

The descriptor SsNH2E-index (22.59%) is directly proportional to 

the activity; this descriptor signifies electro topological state 

indices for number of –NH2 group connected with one single bond. 

Finally descriptor T_O_F_5 (13.45%) is an influential descriptor 

and is directly proportional to the activity which signifies the count 

of number of oxygen atom separated from fluorine atom by 5 

bonds in a molecule. 

The plot of observed versus predicted activity (Figure 5) 

showed that the model is able to predict the activity of training set 

quite well (all points close to the regression line) as well as  

external test set (all points close to the regression line) providing 

confidence in predictive  ability of the model. 

 

Unicolumn Statistics is a method to analyze the descriptor 

data to check data spread by calculating mean and standard 

deviation for both training dataset as well as test set. The result of 

Unicolumn statistics for model is given in Table No. 3. 

 

The min and max values in both training and test should 

be compared in a way that: 

 

•The max of the test should be less than max of training set. 

•The min of the test should be greater than min of training set. 

 

Unicolumn statistics of model shows that the test set is 

interpolative i.e. derived within the min-max range of the training 

set. The mean and standard deviation of the training and test set 

provides insight to the relative difference of mean and point 

density distribution (along mean) of the two sets. Also, a relatively 

higher standard deviation in training set indicated that training set 

has widely distributed activity of the molecules as compared to the  

test set. Correlation matrix showed the measure of dependence 

between the two descriptors (Table No.4). The actual and predicted 

activity with residual of model is shown in Table 5. 

 

3.2 3D–QSAR studies 

 

3-D QSAR analysis was performed using kNN – MFA 

with stepwise forward- backward variable selection method. The 

model summary is given in Table 6. 

 

The model explains internal (q2 = 0.5493) as well as 

external (prd r2 = 0.3418) model validation and prediction. The 

model consisted of two electrostatic descriptor and one steric  

descriptor with kNN (k=2). The electrostatic and steric descriptors 

at the grid showed the relative position and ranges in the model 

providing guidelines for new molecule design (Figure- 6,7). 

Positive range in the electrostatic descriptor means that a positive  

electrostatic potential is favorable for biological activity. Negative 

range in the steric descriptors means that a less bulky substitution 

is favorable for biological activity. The actual and predicted 

activities with residual values are shown in Table 7. 
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Table 1. Imidazole analogues with HO-1 inhibitory activity 

 

 

 

                                                       

S.No. R IC50 (µM) of HO-1  pIC50 of HO-1 

01.  Phenyl sulphanyl 1.03 -0.01283 

02.  4-aminophenyl sulphanyl 0.33 0.48148 

03.  2-aminophenyl sulphanyl 4 -0.60205 

04.  3-aminophenyl sulphanyl 4 -0.60205 

05.  Pyridin-4-yl sulphanyl 25 -1.39794 

06.  4-hydroxyphenyl sulphanyl 1.59 -0.20139 

07.  4-bromophenyl sulphanyl 2.1 -0.32221 

08.  4-methoxyphenyl sulphanyl 0.7 0.15490 

09.  4-chlorophenyl sulphanyl 2.8 -0.44715 

10.  4-fluorophenyl sulphanyl 2.2 -0.34242 

11.  4-nitrophenyl sulphanyl 6 -0.77815 

12.  (5-trifluoromethyl)pyridin-2 yl sulphanyl 2.1 -0.32221 

13.  cyclohexyl sulphanyl 0.94 0.02687 

14.  naphthalene-2-yl sulphanyl 0.9 0.04575 

15.  3-bromophenyl sulphanyl 5 -0.69897 

16.  2-bromophenyl sulphanyl 6 -0.77815 

17.  4-aminophenoxy 1.4 -0.14612 

18.  4-hydroxyphenoxy 1.8 -0.25527 

19.  Phenoxy 0.59 0.22914 

20.  4-bromophenoxy 3.5 -0.54406 

21.  4-fluorophenoxy 0.28 0.55284 

22.  Biphenyl-4-yl oxy 2 -0.30102 

23.  4-methoxyphenoxy 1.33 -0.12385 

24.  4-iodophenoxy 9 -0.95424 

25.  4-cyanophenoxy 0.67 0.17392 
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Table 2. Grid Settings. 

Grid Setting  From To Interval 

X  

 

-4.881500 20.057900 2.0000 

Y  -7.056700 16.736500 2.0000 

Z  -7.959000 8.692700 2.0000 

  

 

 

              Table 3. Unicolumn Statistics 

 

 

  

Column 

name 
Average Max Min Std Dev. Sum 

Training pIC50 -0.2811 0.5528 -1.3979 0.4962 -5.0592 

Test pIC50 -0.4011 0.1739 -0.7782 0.3725 -2.0056 
  

   Table 4. Correlation matrix of Descriptors 

 Mol. Wt. SsNH2E-index T_N_O_7 T_O_F_5 

Mol. Wt. 1    

SsNH2E-index -0.18064 1   

T_N_O_7 -0.25501 0.443648 1  

T_O_F_5 -0.21914 -0.08574 -0.08575 1 

 

               Table 5. Actual and predicted activity [pIC50] with residual of model 

 

Molecule Actual (pIC50) Prediction Residual 

DG01 -0.01283 -0.01565 0.00282 

DG02 0.48148 0.588312 -0.106832 

DG03* -0.60205 -0.62844 0.02639 

DG04 -0.60205 -0.65409 0.05204 

DG05 -1.39794 -1.28131 -0.11663 

DG06 -0.20139 -0.13487 -0.06652 

DG07 -0.32221 -0.60358 0.28137 

DG08 0.1549 -0.2394 0.39430 

DG09 -0.44715 -0.27233 -0.17482 

DG10 -0.34242 -0.14971 -0.19271 

DG11 -0.77815 -0.35097 -0.42718 

DG12 -0.32221 -0.52973 0.20752 

DG13 0.02687 -0.06071 0.08758 

DG15 -0.69897 -0.60358 -0.09539 
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* indicates compounds of test set 

              Table 6.   Statistics value of 3-D model 

kNN = 2 n = 16 Degree of freedom = 12 

q2 = 0.5493 q2 se =0.3557 

Prd r2 = 0.3358 Prd r2se = 0.3418 

Descriptor Range:     E_834 (2.9876, 3.2702) 

                                   E_932 (9.2356, 9.9801) 

                                   S_601 (-0.5045, -0.5044) 

 

                Table 7: Actual and predicted activities [pIC50 ] with residual values for the 3D- model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* indicates compounds of test set 

DG16* -0.77815 -0.60358 -0.17457 

DG18* -0.25527 -0.01515 -0.24012 

DG19 0.22914 0.104081 0.125059 

DG20* -0.54406 -0.48385 -0.06021 

DG21 0.55284 0.561171 -0.00833 

DG22 -0.30102 -0.463 0.16198 

DG23 -0.12385 -0.11967 -0.00418 

DG24 -0.95424 -0.83412 -0.12012 

DG25* 0.17392 -0.08229 0.25621 

Molecule Actual (pIC50) Prediction Residual 

DG01 0.01283 -0.23676 0.22393 

 DG02* 0.48148 -0.10683 0.58831 

 DG03* -0.60205 -0.74143 0.139384 

 DG04 * -0.60205 -0.7328 0.130754 

DG05 -1.39794 -0.67523 -0.722712 

DG06 -0.20139 -0.08955 -0.111837 

DG07 -0.32221 -0.39752 0.075311 

 DG08* 0.1549 -0.10674 0.261642 

DG09 -0.44715 -0.33222 -0.114935 

DG10 -0.34242 -0.38733 0.044905 

DG11 -0.77815 -1.13374 0.35559 

 DG12* -0.32221 -0.38462 0.062407 

DG13 0.02687 0.189304 -0.162434 

DG15 -0.69897 -0.77813 0.079162 

DG16 -0.77815 -0.68554 -0.092608 

 DG18* -0.25527 -0.75054 0.495265 

DG19 0.22914 -0.10923 0.338373 

DG20 -0.54406 -0.91203 0.367971 

DG21 0.55284 0.080772 0.472068 

 DG22* -0.30102 -0.32609 0.025066 

DG23 -0.12385 0.360731 -0.484581 

DG24 -0.95424 -0.52521 -0.429033 

DG25 0.17392 0.337069 -0.163149 
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4.   CONCLUSION 

 

An imidazole-dioxolane compound has emerged as a 

potential therapeutic agent for Heme Oxygenase inhibition. So the 

present work focused on the QSAR analysis on some novel  

imidazole derivatives for the development of potent Heme 

Oxygenase inhibitor with the  help  of software. The 2-D QSAR 

analysis suggested four descriptors, Molecular weight, SsNH2E  

index, T_N_O_7  and  T_O_F_5 contributed to the biological 

activity. Out  of  the  four  descriptors Molecular weight and 

T_N_O_7 contributed negatively while SsNH2E index and 

T_O_F_5 contributed positively. The model showed good 

statistical values and correlation matrix of the descriptors. The 3-D 

descriptors electrostatic and steric revealed the relative positions 

and range for substitution in a molecule. In 3D model, grid 

suggested that a positive electrostatic potential is favorable for 

increase in biological activity and the steric field with negative 

range and the negative range indicates that negative steric potential 

is favorable for increase in the activity. So, with the help of 2D and 

3D data, some new molecules can be designed in order to get a 

potent compound.    
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