Ascorbic acid inhibitory activity on resistant strains of Enterobacter spp.: in vitro study

  • Sara H Mohamed Department of Microbiology, National Organization for Drug Control and Research, Giza, Egypt
  • Yasmine M Saied Department of Microbiology, National Organization for Drug Control and Research, Giza, Egypt

Abstract

Enterobacter species, members of Enterobacteriaceae family that belong to the ESKAPE group, were expressed as the principal rise of nosocomial resistant infections. This study was aimed to test the antibacterial activity of ascorbic acid on Enterobacterclinical strains. Four Enterobacter strains were collected and identified by both biochemical and MALDI-TOF methods. Antibiotic susceptibility testing of commercially available antibiotics was performed using disc diffusion method. Antibacterial activity of ascorbic acid was tested by using agar well diffusion and broth microdilution methods. The collected strains were identified as three strains Enterobacteraerogenes and one strain Enterobacter cloacae. High resistance rates toward both cefotaxime and nalidixic acid were obtained by disc diffusion method. By well diffusion, 100 mg/ml and 50 mg/ml concentrations of ascorbic acid were found to be effective. While by using microbroth dilution, concentrations of 1.5, 3.125 and 6.25 mg/ml of ascorbic acid were detected as minimum inhibitory concentrations. Our results demonstrated a good antibacterial activity of ascorbic acid on Enterobacter strains and further studies on ascorbic acid/antibiotics combinations are in need.

Keywords: Enterobacter aerogenes, Enterobacter cloacae, ascorbic acid, MALDI-TOF

References

1. Nirbhavane HM, Bagde US. Resistance by Enterobacter spp. towards several antimicrobial drugs and heavy metals : A review. African J Biotechnol. 2017;16(16):826-841. doi: 10.5897/AJB2017.15875.
2. Bhat S, Shobha KL, Rao AS, Rao GS. Antibacterial Susceptibility Pattern of Uropathogenic Enterobacter Species from a Tertiary Care Hospital. J Krishna Inst Med Sci Univ. 2018;7(4):32-37.
3. Mohamed SH, Salem D, Azmy M, Fam NS. Antibacterial and antibiofilm activity of cinnamaldehyde against carbapenem-resistant Acinetobacter baumannii in Egypt : In vitro study. J Appl Pharm Sci. 2018;8(11):151-156. doi: 10.7324/JAPS.2018.81121.
4. Mohamed MSM, Abdallah AA, Mahran MH, Shalaby M. Potential Alternative Treatment of Ocular Bacterial Infections by Oil Derived from Syzygium aromaticum Flower (Clove). Curr Eye Res. 2018;43(7):873-881. doi: 10.1080/02713683.2018.1461907.
5. Agyepong N, Govinden U, Owusu-ofori A, Essack SY. Multidrug-resistant gram-negative bacterial infections in a teaching hospital in Ghana. Antimicrob Resist Infect Control. 2018;7(37).https://doi. org/10.1186/s13756-018-0324-2
6. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front Microbiol. 2019;10(April):539. doi: 10.3389/fmicb.2019.00539.
7. Davin-regli A, Pagès J. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol. 2015;6:392. doi: 10.3389/fmicb.2015.00392.
8. Mordi RM, Hugbo PG. Frequency of Isolation of Enterobacter Species from a Variety of Clinical Specimens in a Teaching Hospital in Nigeria. Trop J Pharm Res. 2011;10(December):793-800. http://dx. doi. org/10.4314/tjpr. v10i6.13
9. Pati NB, Doijad SP, Schultze T, et al. Enterobacter bugandensis : a novel enterobacterial species associated with severe clinical infection. Sci Rep. 2018;8:5392. doi: 10.1038/s41598-018-23069-z.
10. Mahmoud I, Shahhat A, Ghazal GM, Mohamed GS. Effect of Ascorbic acid and Niacin on Protein, Oil Fatty Acids and Antibacterial Activity of Lupinus termis Seeds. Int J Pharmacogn Phytochem. 2014;6(4):866-873.
11. Verghese R, Mathew S, David A. Antimicrobial activity of Vitamin C demonstrated on uropathogenic Escherichia coli and Klebsiella pneumoniae. J Curr Res Sci Med. 2017;3:88-93. doi: 10.4103/jcrsm. jcrsm.
12. Naidu KA. Vitamin C in human health and disease is still a mystery ? An overview. Nutr J. 2003;2:7.
13. Rave AFG, Kuss A V, Peil GHS, Ladeira SR, Villarreal JP V, Nascente PS. Biochemical identification techniques and antibiotic susceptibility profile of lipolytic ambiental bacteria from effluents. Brazilian J Biol. 2019;79(4):555-565. https://doi. org/10.1590/1519-6984.05616
14. Abouseada, Moheb, Moez. Impact of MALDI-TOF in the Routine Diagnostic Microbiology Laboratory in Alexandria University, Egypt. Egypt. J Med Microbiol. 2016;3:616-620.
15. The Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing CLSI Supplement M100-S29; 2019.
16. Mohamed SH, Mohamed MSM, Khalil MS, Mohamed WS, Mabrouk MI. Antibiofilm activity of papain enzyme against pathogenic Klebsiella pneumoniae. J Appl Pharm Sci. 2018;8(06):163-168. doi: 10.7324/JAPS.2018.8621.
17. Mummed B, Abraha A, Feyera T, Nigusse A, Assefa S. In vitro Antibacterial Activity of Selected Medicinal Plants in the Traditional Treatment of Skin and Wound Infections in Eastern Ethiopia. Biomed Res Int. 2018;2018:1862401. https://doi. org/10.1155/2018/1862401
18. Cursino L, Chartone-Souza E, Nascimento AMA. Synergic interaction between ascorbic acid and antibiotics against Pseudomonas aeruginosa. Brazilian Arch Biol Technol. 2005;48(3):379-384. doi: 10.1590/S1516-89132005000300007.
19. Mohamed SH, Mohamed MSM, Khalil M, Azmy M, Mabrouk M. Combination of essential oil and ciprofloxacin to inhibit/eradicate biofilms in multidrug-resistant Klebsiella pneumoniae. J Appl Microbiol. 2018;125:84-95. doi: 10.1111/jam.13755.
20. Ramsamy Y, Essack SY, Sartorius B, Patel M, Mlisana KP. Antibiotic resistance trends of ESKAPE pathogens in Kwazulu-Natal, South Africa : A five-year retrospective analysis. Afr J Lab Med. 2018;7(2):a887. https://doi. org/10.4102/ajlm. v7i2.887
21. Malekzadegan Y, Hadadi M, Ebrahim-saraie HS, Heidari H, Motamedifar M. Antimicrobial Resistance Pattern and Frequency of Multiple-Drug Resistant Enterobacter Spp. at A Tertiary Care Hospital in Southwest of Iran. J Krishna Inst Med Sci Univ. 2017;6(2):33-39.
22. Maraki S, Vardakas K, Perdikis D, et al. In vitro susceptibility and resistance phenotypes in contemporary Enterobacter isolates in a university hospital in Crete, Greece. Futur Microbiol. 2017;12:683-693.
23. Amin M, Mehdinejad M, Pourdangchi Z. Study of bacteria isolated from urinary tract infections and determination of their susceptibility to antibiotics susceptibility to antibiotics. Jundishapur J Microbiol. 2009;2(January 2009):118-123. http://jjm. ajums. ac. ir
24. Karlowsky JA, Hoban DJ, Hackel MA, Lob SH, Sahm DF. Antimicrobial susceptibility of Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Asia–Pacific countries : SMART 2013–2015. J Med Microbiol. 2017;66:61-69. doi: 10.1099/jmm.0.000421.
25. Okeke IN, Laxminarayan R, Bhutta ZA, et al. Antimicrobial resistance in developing countries. Part I : recent trends and current status. Lancet Infect Dis. 2005;5(August):481-493.
26. Dphil IF, Thomas P, Boeckel V, Pires J, Ba JC, Laxminarayan R. Global geographic trends in antimicrobial resistance : the role of international travel. J ofTravel Med. 2019:1-13. doi: 10.1093/jtm/taz036.
27. Mehnaz S, Afzal S, Khalil S, Khan Z. Impact of Iron, Folate and Vitamin C Supplementation on The Prevalence of Iron Deficiency Anemia In Non-pregnant Females of Peri Urban Areas of Aligarh. Indian J Community Med. 2006;31(3):201-203.
28. Pullar JM, Carr AC, Vissers MCM. The Roles of Vitamin C in Skin Health. Nutrients. 2017;9:866. doi: 10.3390/nu9080866.
29. Sharma SR, Poddar R, Sen P, Andrews JT. Effect of vitamin C on collagen biosynthesis and degree of birefringence in polarization sensitive optical coherence tomography (PS-OCT). African J Biotechnol. 2008;7(12):2049-2054. http://www. academicjournals. org/AJB
30. Akbari A, Jelodar G, Nazifi S, Sajedianfard J. An Overview of the Characteristics and Function of Vitamin C in Various Tissues : Relying on its Antioxidant Function. Zahedan J Res Med Sci. 2016;18(11):e4037. doi: 10.17795/zjrms-4037. Review.
31. ´nska-Piróg JK, Skowron K, Bogiel T, Białucha A, Przekwas J, Gospodarek-Komkowska E. Vitamin C in the Presence of Sub-Inhibitory Concentration of Aminoglycosides and Fluoroquinolones Alters Proteus mirabilis Biofilm Inhibitory Rate. Antibiotics. 2019;8:116. doi: 10.3390/antibiotics8030116
32. Verghese RJ, Ramya S, Kanungo R. In vitro Antibacterial Activity of Vitamin C and in Combination with Ciprofloxacin against Uropathogenic Escherichia coli. J Clin Diagnostic Res. 2017;11:DC01-DC05. doi: 10.7860/JCDR/2017/31251.10960.
33. Pandit S, Ravikumar V, Abdel-haleem AM, et al. Low Concentrations of Vitamin C Reduce the Synthesis of Extracellular Polymers and Destabilize Bacterial Biofilms. Front Microbiol. 2017;8:2599. doi: 10.3389/fmicb.2017.02599.
34. Srividya G, Deepthi B, Lakshminarasaiah S. Ascorbic acid enhances ciprofloxacin antibacterial activity in vitro against isolates of Escherichia coli from subclinical mastitis cases of buffaloes. 2017;2(5):21-24.
35. Syal K, Bhardwaj N, Chatterji D. Vitamin C targets (p)ppGpp synthesis leading to stalling of long-term survival and biofilm formation in Mycobacterium smegmatis. FEMS Microbiol Lett. 2017;346:fnw282. doi: 10.1093/femsle/fnw282.
36. Grosso G, Bei R, Mistretta A, et al. Effects of vitamin C on health: A review of evidence. Front Biosci. 2013:1017-1029. doi: 10.2741/4160.
Statistics
36 Views | 26 Downloads
How to Cite
Sara H Mohamed, and Yasmine M Saied. “Ascorbic Acid Inhibitory Activity on Resistant Strains of Enterobacter spp.: In Vitro Study”. Current Research in Pharmaceutical Sciences, Vol. 9, no. 4, Jan. 2020, pp. 67-72, doi:10.24092/CRPS.2019.090403.
Section
Research Articles